• Title/Summary/Keyword: gravel size

Search Result 155, Processing Time 0.025 seconds

Effect of Gravel Size on Shear Behavior of Sand with Dispersed Gravels (모래 지반 내에 포함된 자갈의 크기가 전단거동에 미치는 영향)

  • Park, Sung-Sik;Kim, Young-Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1C
    • /
    • pp.39-51
    • /
    • 2011
  • A large number of small particles may surround large gravels which are non-contact and dispersed within the ground. The strength of such soil may be influenced by the mechanical properties of a few coarse gravels. A specimen or gravel size can impact the shear characteristics of sand with dispersed gravels. In this study, the size of gravel and specimen varies and its effect on shear characteristics of a granular soil was evaluated. Five sizes of gravels with 7, 12, 15, 18, and 22 mm were used repeatedly and inserted in the middle of each compacted layer. A specimen consists of five or ten equal layers depending on gravel size, which is 5 cm or 10 cm in diameter and 10 cm or 20 cm in height. An embedded gravel ratio by weight is 3% and constant for all cases with gravel. After consolidation, a series of undrained triaxial compression tests under three confining pressures was performed on sand with dispersed gravels. The maximum deviator stress of a specimen with 10 cm in diameter was at average 30% higher than that with 5 cm in diameter and increased up to 90% for a specimen with gravel. When a gravel size of 7 and 12 mm used, the maximum deviator stress of a specimen with 10 cm in diameter was higher than that of one without gravel, whereas the maximum deviator stress of a specimen with 5 cm was higher or lower than that without gravel. The gravel size and specimen diameter influenced the undrained behavior of sand. The maximum deviator stress of a specimen with gravel either increased or decreased compared to that without gravel, depending on the ratio of gravel size to specimen diameter, 1/5.

Potential use of waste rubber shreds in drainage layer of landfills - An experimental study

  • Praveen, V.;Sunil, B.M.
    • Advances in environmental research
    • /
    • v.5 no.3
    • /
    • pp.201-211
    • /
    • 2016
  • Laboratory tests were conducted to evaluate the performance of waste rubber shreds in leachate collection layer of engineered landfills. The study found that waste rubber shreds layer in combination with a gravel layer can be of potential use in landfill drainage system. To study the performance, conventional gravel along with waste rubber shreds were used in different combinations (with total layer thickness = 500 mm) as leachate collection media. For the laboratory study poly vinyl chloride (PVC) pipes were used. The size range of waste rubber shreds used were 25 mm to 75 mm in length and width = 10 to 20 mm. The gravel size used in the leachate collection media is 10 mm to 20 mm size. Performance study of 7 Test Cols. with different combinations of waste rubber shreds and gravel bed thickness were studied to find out the best combination. The study found that the Test Col.-3 having waste rubber shreds thickness = 200 mm and gravel layer thickness = 300 mm gave the best results in terms of percentage removal in various physicochemical parameters present in the leachate. Further to find the best size rubber shreds three more Test Cols - 8, 9 and 10 were constructed having the rubber shreds and gravel layer ratio same as that of Test Col.-3 but having rubber shreds width = 10 mm, 15 mm and 20 mm respectively. Based on the results obtained using Test Cols. 8, 9 and 10 the study found that smaller size rubber shreds gave bests results in terms of improvement in various leachate parameters.

Bar Development in Gravel-bed River (자갈하상하천의 bar지형 발달에 관한 연구 -골지천을 사례로-)

  • Yang, Hee-Kyung
    • Journal of the Korean Geographical Society
    • /
    • v.32 no.4
    • /
    • pp.435-444
    • /
    • 1997
  • Bars in a river bed show the flow of the river, the shape of a river bar can be easily measured in any river. The purpose of this study is to research the morphological characteristics of river bars. The case study area is the lower Golgi River, six bars were examined. All six bars are gravel bars with a grain size in excess of 2 millimeters. Four of the bars are longitudinal bars, in which the direction of the bar follows the river current. After analyzing the gravel in the bars, it was determined that as the gravel flows down the river, gravel grain size decreases while grain roundness increases. The shape of bar varies locally according to flow regime, channel slope, and w/d ratio.

  • PDF

An analysis on gravel and sand ofsand-gravel bar in the Duchon stream of Hong-Cheon Region (홍천 두촌천 사력퇴의 역과 모래 분석)

  • Oh, Su Jeong;Cho, Heon;Hwang, Sung-Han;Kim, Man Kyu
    • Journal of The Geomorphological Association of Korea
    • /
    • v.21 no.4
    • /
    • pp.109-120
    • /
    • 2014
  • This study is an analysis on gravel and sand of sand-gravel bar that stretches variously in the Duchon stream basin, which is one of Hong-Cheon River(a well-developed sand-gravel bar in upstream river)'s upper stream basin. The purpose of this study was to understand the characteristic of the stream's topographic development that variously occur in the small basin by comparing the differences between the aspects of development and the sediment of sand-gravel bar in each section and by examining the transition of sediments moving from upstream to downstream. Through the analysis on the roundness and flatness of gravel, we observed an irregular trend following the increase in supply of granite gravel and gneiss gravel as we traveled downstream. As for the aspect of change in sand's grain size, the overall ratio of medium-coarse sand was very high, but the results showed no big difference in the change following the inflow of stream from the main stream section to the gneiss and granite zone.

A Study on Strength Characteristics of Sand-gravel Mixtures (모래-자갈 혼합토의 강도 특성에 관한 연구)

  • Park, Sung-Sik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.5
    • /
    • pp.13-19
    • /
    • 2011
  • The strength of granular mixtures can be controlled by the majority of the mixture, fine grains. However, in some cases, the small amount of gravel in the mixture may influence the strength of the mixture. In this study, the effect of some dispersed gravels on strength of sand is evaluated. Gravels are embedded in the middle of each cemented sand layer. The size and number of embedded gravels varies. After two days curing, a series of unconfined compression tests is performed on the cemented sand with dispersed gravels. In addition to that, a series of direct shear tests is also carried out on clean sand with gravels to evaluate its friction angle. For the specimens with the same ratio of gravel weight of 7% in which gravel size and number are different, an unconfined compressive strength(UCS) of a specimen with gravels decreases up to 15% compared to a specimen without gravel and then increases with increasing gravel number. For specimens embedded with the same size of gravel, UCS decreases and then increases as a number of gravel increases. As a number of gravel increases, a friction angle of clean sand with gravels decreases up to $5^{\circ}$ and then recovers up to that of a specimen without gravel.

Leaching of Arsenic in Soils Amended with Crushed Arsenopyrite Rock

  • Lee, Kyosuk;Shim, Hoyoung;Lee, Dongsung;Yang, Jae E.;Chung, Dougyoung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.2
    • /
    • pp.113-119
    • /
    • 2014
  • Arsenic and its compounds which is one of the most toxic elements that can be found naturally on earth in small concentrations are used in the production of pesticides, herbicides, and insecticides. Most arsenic that cannot be mobilized easily when it is immobile is also found in conjunction with sulfur in minerals such as arsenopyrite (AsFeS), realgar, orpiment and enargite. In this investigation we observed the leaching of arsenic in soils amended with several levels of gravel size of arsenopyrite collected from a road construction site. Soil and gravel size of arsenopyrite were characterized by chemical and mineralogical analyses. Results of XRF analysis of arsenopyrite indicated that the proportion of arsenate was 0.075% (wt $wt^{-1}$) while the maximum amount of arsenic in soil samples was 251.3 mg $kg^{-1}$. Cumulative amounts of effluent collected from the bottom of the soil column for different mixing rate of the gravel were gradually increased where proportion of the gravel mixed was greater than 70% whereas the effluent was stabilized to the maximum after approximately 45 pore volumes of effluent or greater were collected. The arsenic in the effluent was recovered from the soil columns in which the proportion of arsenopyrite gravel was 60% or greater. The total amount of arsenic recovered as effluent was increased with increasing proportion of gravel in a soil, indicating that the arsenic in the effluent was closely related with gravel fraction of arsenopyrite.

Design Example of Gravel Mat for Horizontal Drains (쇄석Mat를 이용한 수평배수공법 설계사례)

  • Jeong, Kyeong-Han;Lee, Young-Keun;Lee, See-Woo;Kim, Jae-Sung;Kim, Byung-Tak
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.174-187
    • /
    • 2005
  • Recently, because of environment, cost, supply and demand factors, though applying sea-sand as horizontal drains is getting difficult that usage of Gravel has been growing in large size of construction sites, Study on engineering properties and behavior characteristics of Gravel stratum is not thoroughgoing enough. We have applied Gravel Mat as the horizontal drains in O O construction site. We also conducted several field tests such as Material property test, Geosynthetics damage test with Repeated load, Discharge capacity test performed by inflow of upper soil and In-situ PBD Penetration test to review the application of Gravel Mat. Test results show that Gravel Mat is not only advantageous in Trafficability and Water drainage by Consolidation due to its great Internal friction angle and Permeability, but also easy to penetrate with Mandrel and has great discharge capacity and guarantee of the stability against geosynthetics damage at the same time. With these benefits Gravel Mat shows great application in fields.

  • PDF

A Study of CFRD using a Gravel Fill (하상사력재를 이용한 CFRD의 연구)

  • Jeong, Chan-Kyun;Noh, Tae-Gil;Lee, Song
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.842-853
    • /
    • 2008
  • In the construction of dam, the key factor which decides the type of dam is security of materials resource. Because of the large scale earth work, the ability to supply the materials is essential part about economical efficiency. The research is the case study about controlling the plan to secure the material resources in the design of Buhang multipurpose dam. In case of Buhang multipurpose dam, at that time of basic design, it was planned to use a rock fill material. From the detail investigation about the river bed accumulative layer widely spread on the submerged district on the basic design, the research is accomplished to replace rock material with gravel material. After the investigation of whole reserves of gravel material, estimation of conformity as dam construction material from analysis of grain size distribution, the case study of oversea construction, and the material property comparison between rock fill material and gravel fill material, it is verified th possibility of using the gravel fill. Thereafter, the analysis of dam stability using a gravel fill material is accomplished. Finally, A gravel fill material can be used as the main construction material of CFRD, therefore the efficiency of resource recycling in the submerged area is maximized, and the established plan is more advantageous to stability, constructibility, environmentibility than the case of using a rock fill.

  • PDF

Analysis of size distribution of riverbed gravel through digital image processing (영상 처리에 의한 하상자갈의 입도분포 분석)

  • Yu, Kwonkyu;Cho, Woosung
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.7
    • /
    • pp.493-503
    • /
    • 2019
  • This study presents a new method of estimating the size distribution of river bed gravel through image processing. The analysis was done in two steps; first the individual grain images were analyzed and then the grain particle segmentation of river-bed images were processed. In the first part of the analysis, the relationships (long axes, intermediate axes and projective areas) between grain features from images and those measured were compared. For this analysis, 240 gravel particles were collected at three river stations. All particles were measured with vernier calipers and weighed with scales. The measured data showed that river gravel had shape factors of 0.514~0.585. It was found that the weight of gravel had a stronger correlation with the projective areas than the long or intermediate axes. Using these results, we were able to establish an area-weight formula. In the second step, we calculated the projective areas of the river-bed gravels by detecting their edge lines using the ImageJ program. The projective areas of the gravels were converted to the grain-size distribution using the formula previously established. The proposed method was applied to 3 small- and medium- sized rivers in Korea. Comparisons of the analyzed size distributions with those measured showed that the proposed method could estimate the median diameter within a fair error range. However, the estimated distributions showed a slight deviation from the observed value, which is something that needs improvement in the future.

Determination of Equivalent Roughness for Estimating Flow Resistance in Stabled Gravel-Bed River: I. Theory and Development of the Model

  • Park, Sang-Woo;Lee, Sin-Jae;Jang, Suk-Hwan
    • Journal of Environmental Science International
    • /
    • v.17 no.11
    • /
    • pp.1203-1210
    • /
    • 2008
  • Flow resistance in a natural stream is caused by complex factors, such as the grains on the bed, vegetation, and bed-form, reach profile. Flow resistance in a generally stable gravel bed stream is due to protrudent grains from bed. Therefore, the flow resistance can be calculated by equivalent roughness in gravel bed stream, but estimation of equivalent roughness is difficult because nonuniform size and irregular arrangement of distributed grain on natural stream bed. In previous study, equivalent roughness is empirically estimated using characteristic grain size. However, application of empirical equation have uncertainty in stream that stream bed characteristic differs. In this study, we developed a model using an analytical method considering grain diameter distribution characteristics of grains on the bed and also taking into account flow resistance acting on each grain. Also, the model consider the protrusion height of grain.