• Title/Summary/Keyword: gravel bed

Search Result 102, Processing Time 0.022 seconds

Potential use of waste rubber shreds in drainage layer of landfills - An experimental study

  • Praveen, V.;Sunil, B.M.
    • Advances in environmental research
    • /
    • v.5 no.3
    • /
    • pp.201-211
    • /
    • 2016
  • Laboratory tests were conducted to evaluate the performance of waste rubber shreds in leachate collection layer of engineered landfills. The study found that waste rubber shreds layer in combination with a gravel layer can be of potential use in landfill drainage system. To study the performance, conventional gravel along with waste rubber shreds were used in different combinations (with total layer thickness = 500 mm) as leachate collection media. For the laboratory study poly vinyl chloride (PVC) pipes were used. The size range of waste rubber shreds used were 25 mm to 75 mm in length and width = 10 to 20 mm. The gravel size used in the leachate collection media is 10 mm to 20 mm size. Performance study of 7 Test Cols. with different combinations of waste rubber shreds and gravel bed thickness were studied to find out the best combination. The study found that the Test Col.-3 having waste rubber shreds thickness = 200 mm and gravel layer thickness = 300 mm gave the best results in terms of percentage removal in various physicochemical parameters present in the leachate. Further to find the best size rubber shreds three more Test Cols - 8, 9 and 10 were constructed having the rubber shreds and gravel layer ratio same as that of Test Col.-3 but having rubber shreds width = 10 mm, 15 mm and 20 mm respectively. Based on the results obtained using Test Cols. 8, 9 and 10 the study found that smaller size rubber shreds gave bests results in terms of improvement in various leachate parameters.

Calculation of Roughness Coefficient in Gravel-bed River with Observed Water Levels (실측 수위에 의한 자갈하천의 조도계수 산정)

  • Kim, Ji-Sung;Lee, Chan-Joo;Kim, Won
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.10
    • /
    • pp.755-768
    • /
    • 2007
  • The purpose of this study is to analyse the characteristics of Manning's roughness coefficient according to change of discharge by using observed data obtained from a stable gravel-bed river and to investigate the applicability of the relevant existing empirical methods to it. Observed water level and discharge data are used as input data for the USGS computer program NCALC model for calculation of the roughness coefficient. Calculated values are compared with roughness values which are estimated with four widely used methods. The results show that though the empirical methods are able to give similar roughness values only for flood flow, they seem to have rather high uncertainty because of necessity of subjective judgement and differences of resultant values. Roughness coefficients for normal-low flow cannot be estimated from the existing empirical formulae. Especially, using the Manning equation for calculating them should be careful as this provides a wide range of estimated values in normal-low flow. The relations between the roughness coefficient and characteristic size of bed materials are different from them in flood flow even though they have a close relations.

Characteristics of Steep Shingi Gully with Channelized Debris Flows (계곡형 토석류가 발생한 급경사 신기 계곡의 특성)

  • Park, Sang Doeg;Kim, Yong Hyun;Ham, Gwang Hyun;Son, Sang Jin;Na, Raksmey;Kim, Nam Jin
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.3
    • /
    • pp.13-26
    • /
    • 2021
  • In mountain gully, channelized debris flow is an important phenomenon in the process of topographical change. Social infrastructure as roads may be damaged by channelized debris flows, but there has been little information about their occurrence and movement to prepare for the risk of the debris flow. Most of the channelized debris flows occur during heavy rains in mountainous valleys that are difficult to access, so there are not many field data. In this study, the topographical characteristics of the catchment, the rainfall and runoff related to the debris flow, the sedimentary pattern and the cross-sectional change of the channel bed, and the underflow velocity of the gravel bed have been investigated and analyzed in the Singi gully where the channelized debris flows occurred. In the catchment, there was almost no sediment runoff because the vegetation combine with the debris landforms and covered the surface. Therefore, the obvious cause of the channelized debris flows is the collapse of the slope and bed of the gully. Even if the gravel, cobbles, and boulders of the channel bed were lost by debris flow, the thalweg change due to debris flow may not be significant because they are supplied from the gully side slope normally. After the gabion structures were installed, the debris flow increased the thalweg change, bed erosion and side slope of the gully. Various sedimentary structures in the gully were classified according to the factors supporting the sedimentation. The hypsometric curve of the gully reflects the debris landforms and vegetation characteristics of the watershed and the sediment runoff due to debris flow, etc. The relationship between the flow velocity and the hydraulic gradient was non-linear under the condition that the porous medium with gully bed gravels is saturated with water. These results may be used as basic data for channelized debris flow research.

Restoration Modeling Analysis for Abandoned Channels of the Mangyeong River

  • Kim, Jae-Hoon;Julien, Pierre Y.;Ji, Un;Kang, Joon-Gu
    • Journal of Environmental Science International
    • /
    • v.20 no.5
    • /
    • pp.555-564
    • /
    • 2011
  • This study examines the potential restoration of abandoned channels of the Mangyeong River in South Korea. To analyze the morphological changes and equilibrium conditions, a flow duration analysis was performed to obtain the discharge of 255 m3/s with a recurrence interval of 1.5 year. It is a gravel-bed stream with a median bed diameter of 36 mm. The reach-averaged results using HEC-RAS showed that the top width is 244 m, the mean flow depth is 1.11 m, the width/depth ratio is very high at 277, the channel velocity is 1.18 m/s, and the Froude number is also high at 0.42. The hydraulic parameters vary in the vicinity of the three sills which control the bed elevation. The total sediment load is 6,500 tons per day and the equivalent sediment concentration is 240 mg/l. The Engelund-Hansen method was closer to the field measurements than any other method. The bed material coarser than 33 mm will not move. The methods of Julien-Wargadalam and Lacey gave an equilibrium channel width of 83 m and 77 m respectively, which demonstrates that the Mangyeong River is currently very wide and shallow. The planform geometry for the Mangyeong River is definitely straight with a sinuosity as low as 1.03. The thalweg and mean bed elevation profiles were analyzed using field measurements in 1976, 1993 and 2009. The measured profiles indicated that the channel has degraded about 2 m since 1976. The coarse gravel material and large width-depth ratio increase the stability of the bed material in this reach.

A Study on Roughness Coefficient Estimations in Gravel Bed Stream without Water Level-Discharge Data (수위-유량자료가 부재한 자갈하천의 조도계수 산정에 관한 연구)

  • Lee, Sin-Jae;Park, Sang-Woo
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.12 s.173
    • /
    • pp.985-996
    • /
    • 2006
  • This study developed a model that could calculate equivalent roughness using shear stress acting on distributed grains in gravel bed stream. The estimated equivalent roughness by the model developed was used for estimation of water level and roughness coefficient in the stream without water level-discharge data. The model was applied to the Gurey-Songjeong stage station section located in the Sumjin river mid-downstream. The equivalent roughness by the model developed in this study was estimated to be 0.194m at the Gurey stage station. Calculated water level which the estimated equivalent roughness was applied to the flow model was shown ewer of within 6% in comparison with observed water level. Also, roughness coefficient was estimated using observed and calculated water level about each discharge scale by unsteady flow analysis. As a result, error of roughness coefficient estimated by observed and calculated water level was shown error of $0{\sim}0.002$ and could consider variability of roughness coefficient.

Occurrence of Placer Gold Deposits from the Takaoi Area of the Middle Kalimantan, Indonesia (인도네시아 중부 칼리만탄 따까오이 지역 사금광상의 산출상태)

  • Kim In-Joon;Lee Jae-Ho
    • Economic and Environmental Geology
    • /
    • v.39 no.2 s.177
    • /
    • pp.191-212
    • /
    • 2006
  • Placer gold deposits is mainly distributed in the Takaoi area. The alluvium is unconsolidated or semiconsolidated deposit consisting of gravel, sand, and soil beds in ascending order. They unconformably overlies the Carboniferous-Permian schist and Cretaceous granodiorite substratum. Based on detailed facies analysis, the alluvium can be interpreted as a typical fluvial deposits containing gravel and sand beds of channel-fill unit and soil deposit of floodplain. Gold grains are included mainly in the gravel bed and vein quartz is only contained gold among all kinds of gravels. These features indicates that the source rock of the gold grain is vein quartz and gold grains are separated from vein quartz during transport and abrasion. The reserves of gold in this area reach to at least 792 kg.

Stable Channel Design for the Gravel-bed River Considering Design Constraints (설계구속인자를 고려한 자갈하상 하천의 안정하도 설계)

  • Ji, Un;Jang, Eun-Kyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2860-2867
    • /
    • 2015
  • Stable channel design is to determine the width, depth and slope for satisfying the condition that the upstream incoming sediment rate is equal to the sediment transport rate at the design channel. Therefore, the most sensitive variable when designing a stable channel is the selection of a sediment transport equation applied for the channel design. Especially if in the case of gravel beds the designer uses the equation developed by using the data of sand rivers, the calculation result of the stable channel section has large errors. In this study, the stable channel design has been applied to the gravel bed river using the previous stable channel design program with newly added the sediment transport equation for gravel beds; and the stable channel section considering design constraints has been produced by using the analytical method. As results, in the case of the application with the fixed width, the depth predicted by Ackers and White's equation was the shallowest and Meyer-Peter and $M\ddot{u}ller's$ equation was 0.8 m deeper than the current section of 2.4 m. In the case of the application with the fixed depth, the width predicted by Engelund and Hansen's equation was twice wider than the current section and by Meyer-Peter and $M\ddot{u}ller's$ equation was 20 m wider than the current section of 44 m.

Recent Advances in Sedimentation and River Mechanics

  • Pierre Julien
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2002.05a
    • /
    • pp.3-16
    • /
    • 2002
  • This article describes some of the recent and on-going research developments of the author at Colorado State University. Advances in the field of sedimentation and river mechanics include basic research and computer modeling on several topics. Only a few selected topics are considered here: (1) analytical determination of velocity profiles, shear stress and sediment concentration profiles in smooth open channels; (2) experiments on bedload particle velocity in smooth and rough channels; (3) field measurements of sediment transport by size fractions in curved flumes. In terms of computer modeling, significant advances have been achieved in: (1) flashflood simulation with raster-based GIOS and radar precipitation data; and (2) physically-based computer modeling of sediment transport at the watershed scale with CASC2D-SED. Field applications, measurements and analysis of hydraulic geometry and sediment transport has been applied to: (1) gravel-bed transport measurements in a cobble-bed stream at Little Granite Creek, Wyoming; (2) sand and gravel transport by size fraction in the sharp meander bends of Fall River, Colorado; (3) changes in sand dune geometry and resistance to flow during major floods of the Rhine River in the Netherlands; (4) changes in hydraulic geometry of the Rio Grande downstream of Cochiti Dam, New Mexico; and (5) analysis of the influence of water temperature and the Coriolis force on flow velocity and sediment transport of the Lower Mississippi River in Louisiana. Recent developments also include two textbooks on "Erosion and Sedimentation" and "River Mechanics" by the author and state-of-the-art papers in the ASCE Journal of Hydraulic Engineering.

  • PDF

Sedimentary Environments, Geochemical Characteristics of Sediments and River waters, Hwasun-cheon (화순천의 퇴적환경 및 퇴적물과 하천수의 지구화학적 특성)

  • 오강호;고영구;김주용;김해경
    • Journal of Environmental Science International
    • /
    • v.11 no.9
    • /
    • pp.881-895
    • /
    • 2002
  • Sediments and river waters form the channel of Hwasun-cheon were studied in sedimentological size and geochemical analyses of metallic elements for the purposes of identification of depositional environments and geochemical characteristics. The sizes of sediments are assigned to pebble to coarse sand in mean size and polymodal in distribution. And the sediments are poorly to very poorly sorted and positively skewed. According to the grain size distributions of the sediments, the Hwasun-cheon belongs to gravel-bed river on the basis of the grain size distribution of the sediments. The behaviors of metallic elements in the sediments mainly depend on not grain size distribution but the geology connected with geomorphological reliefs near the stream. Contamination indices(CI) of Zn, Cu and Pb are 2.83 to 6.96 with average 4.31 in the sediments. Hwasun-cheon is assigned to general stream type in accordance with water quality of physical factors and chemical characteristics by Piper's diagram. Though meaningful values of BOD, T-N, T-P were locally depicted near Masan-ri, Hwasun-eup and Jiseok-cheon areas, artificial metal concentration do not represent in the most area of the stream. Sediments and river water are considered that the relatively more or less high metallic contents in the stream are originated from coal mine and urban area.