• Title/Summary/Keyword: grating

Search Result 1,462, Processing Time 0.023 seconds

IGRINS observations of a Herbig Be star, MWC 1080

  • Kim, Il-Joong;Oh, Heeyoung;Jeong, Woong-Seob
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.65.2-65.2
    • /
    • 2018
  • Through MIRIS $Pa{\alpha}$ Galactic plane survey, a lot of $Pa{\alpha}$ blobs were detected along the plane. To reveal their characteristics, we are planning to collect NIR high-resolution spectroscopic data for them by using Immersion GRating INfrared Spectrograph (IGRINS). Here, we present the preliminary results of the IGRINS observations for a Herbig Be star, MWC 1080, which is one of the $Pa{\alpha}$ blobs detected in Cepheus. This Herbig Be star is known to possess a lot of young stellar objects (YSOs) and bright MIR ($10-20{\mu}m$) nebulosity in its vicinity. From IPHAS $H{\alpha}$ data, we revealed large extended $H{\alpha}$ features that correlate well with MIR and 13CO morphologies around MWC 1080. A part of the $H{\alpha}$ features shows a bow shock shape to the northeast of the primary star MWC 1080A, which seems to be due to an outflow from MWC 1080A. Through IGRINS observations, we detected faint [Fe II] ${\lambda}1.644{\mu}m$ and H2 1-0 S(1) ${\lambda}2.122{\mu}m$ emission lines around the bow shock feature. Interestingly, to the east region of MWC 1080A, we also detected strong [Fe II] and H2 emission lines with a couple of velocity components, which suggests the detection of a new outflow from another YSO. Broad $Br{\gamma}$ ${\lambda}2.1662{\mu}m$ line and H2 lines with various velocity components were detected around the bright MIR and $H{\alpha}$ nebulosity as well.

  • PDF

Geometrical Analysis and Implementation of the Real-Time Tuning Structure Using Spatial Light Modulator in Photorefractive Tunable Filter (광굴절 가변 필터에서 공간광학변조기를 이용한 실시간 튜닝 구조의 기하학적 해석 및 구현)

  • An, Jun-Won;Kim, Seong-Goo;Kim, Nam
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.12
    • /
    • pp.43-52
    • /
    • 1999
  • We propose a new method for tuning of center wavelength in photorefractive filter using $LiNbO_3$ crystal doped with 0.015Wt.% Fe. through the filter bandwidth property analysis using the geometrical method, a new wavelength selectivity theory was presented. In this scheme, the tuning of the center wavelength can be achieved by the real time incident angle control of the received heam, which was gotten by the spatial light modulator. So, tuning time depend on the response time of the SLM and results in the high speed turing. Because the use of thermally fixed grating in our filter, it has uniform diffraction property to the all filtering wavelength. Designed tunable filter has 4nm bandwidth and composed of the three channel with 10nm space. From the optical experiment, we get the 4.5nm, 4.25nm, 4nm bandwidth and 1530.5nm, 1540.5nm, 1549.5nm center wavelength respectively.

  • PDF

Center of Photon Mass as a Unified Design Parameter I : DFB Lasers with Low-and High-reflection Faets (DFB 레이저의 통합된 설계 변수로서으 광자 분포 중심 I : 저 반사면-고 반사면 구조)

  • Kim, Sung-Han;Kim, Sang-Bae
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.12
    • /
    • pp.53-62
    • /
    • 1999
  • Center of photon mass(CPM), defined as the center of axial photon distribution, is proposed as a unified design parameter, which contains information about both threshold gain and nonuniformity of axial photon distribution in DFB lasers with low and high-reflection facets. The CPM is inversely proportional to threshold gain and is 0.5 when axial photon distribution is the most uniform. Therefore, a general rule of single-frequency leser design is that main mode CPM should be around 0.5 for-uniform axial photon distribution and side mode CPM should be minimized to maximize the threshold gain difference.

  • PDF

The Mineralogical and Geochemical Study on Korean Scheelites and its Application to the Ore Prospecting (한국산 灰重石鑛의 광물학적, 지화학적 연구 및 그의 探査에의 이용)

  • So, Chil-Sup;Park, Maeng-Eon
    • Economic and Environmental Geology
    • /
    • v.12 no.2
    • /
    • pp.79-93
    • /
    • 1979
  • Twenty five samples of the scheelite-powellite series from twelve Korean tungsten deposits of various geologic settings were studied mineralogically and geochemically. Variations in the trace-element contents of the scheelite minerals are considered in relation to geologic settings and mineralogic properties. Scheelites from ore deposits developed in similar geologic settings and under similar physicochemical conditions are characterized by specific combinations of trace elements.

  • PDF

Measurement of CTE Change in a Composite Laminate with Aging under Space Environment using Fiber Optic Sensors (광섬유센서를 이용한 우주환경하에서 복합재료 적층시편의 노화에 따른 열팽창계수변화 측정)

  • Gang,Sang-Guk;Gang,Dong-Hun;Kim,Cheon-Gon;Hong,Chang-Seon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.10
    • /
    • pp.21-26
    • /
    • 2003
  • In this research, the change of coefficient of thermal expansion (CTE) of graphite/epoxy composite laminate under space environment was measured using fiber optic sensors. Two fiber Bragg grating (FBG) sensors have been adopted for the simultaneous measurement of thermal strain and temperature. Low Earth Orbit (LEO) conditions with high vacuum, ultraviolet and thermal cycling environments were simulated in a thermal vacuum chamber. As a pre-test, a FBG temperature sensor was calibrated and a FBG strain sensor was verified through the comparison with the electric strain gauge (ESG) attached on an aluminun specimen at high and low temperature respectively. The change of the CTE in a composite laminate exposed to space environment was measured for intervals of aging cycles in real time. As a whole, there was no abrupt change of the CTE after 1000 aging cycles. After aging, however, the CTE decreased a Little all over the test temperature range. These changes are caused by outgassing, moisture desorption, matrix cracking etc.

A Study of New High Temperature Grading for Modified and Unmodified Asphalt Binders (개질 및 비개질 아스팔트 바인더의 새로운 고온등급 연구)

  • Huh, Jung-Do;Cho, Gyu-Tae;Nam, Young-Kug
    • International Journal of Highway Engineering
    • /
    • v.3 no.2 s.8
    • /
    • pp.91-102
    • /
    • 2001
  • On the basis of several experiments peformed, Bahia et al. (1998) concluded that the current Superpave PG-grading system failed to characterize grading specification of fill modified binders. This conclusion motivates us to investigate the correct grating system suited for modified asphalt binders. The main concept of this development is originated from the relationship between rut depth and binder properties at high temperatures. A new grading system for modified asphalt binders suggested here somewhat resembles to the unmodified binder grading one developed by Huh et al. (2000). Thus, this investigation will provide a unified single theoretical equation of high temperature grading that can apply both to modified and unmodified binders, and will check its effectiveness with the laboratory and the field rut data reported by independent studies. Successful results observed may allow to construction of a correct grading system in the near future.

  • PDF

Measurements of Two-dimensional Gratings Using a Metrological Atomic Force Microscope with Uncertainty Evaluation

  • Kim, Jong-Ahn;Kim, Jae-Wan;Kang, Chu-Shik;Eom, Tae-Bong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.18-22
    • /
    • 2008
  • The pitch and orthogonality of two-dimensional (2-D) gratings were measured using a metrological atomic force microscope (MAFM), and the measurement uncertainty was analyzed. Gratings are typical standard devices for the calibration of precision microscopes, Since the magnification and orthogonality in two perpendicular axes of microscopes can be calibrated simultaneously using 2-D gratings, it is important to certify the pitch and orthogonality of such gratings accurately for nanometrology. In the measurement of 2-D gratings, the MAFM can be used effectively for its nanometric resolution and uncertainty, but a new measurement scheme is required to overcome limitations such as thermal drift and slow scan speed. Two types of 2-D gratings with nominal pitches of 300 and 1000 nm were measured using line scans to determine the pitch measurement in each direction. The expanded uncertainties (k = 2) of the measured pitch values were less than 0.2 and 0.4 nm for each specimen, and the measured orthogonality values were less than $0.09^{\circ}$ and $0.05^{\circ}$, respectively. The experimental results measured using the MAFM and optical diffractometer agreed closely within the expanded uncertainty of the MAFM. We also propose an additional scheme for measuring 2-D gratings to increase the accuracy of calculated peak positions, which will be the subject of future study.

Development of Multi-Axis Control Program for Long Range AFM Using an FPGA Module (FPGA 모듈을 이용한 Long Range AFM용 다축 제어 프로그램 개발)

  • Lee J.Y.;Eom T.B.;Kim J.W.;Kang C.S.;Kim J.A.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.289-290
    • /
    • 2006
  • In general, atomic force microscope (AFM) used for metrological purpose has measuring range less than a few hundred micrometers. We design and fabricate an AFM with long measuring range of $200mm{\times}200mm$ in X and Y axes. The whole stage system is composed of surface plate, global stage, microstage. By combining global stage and microstage, the fine and long movement can be provided. We measure the position of the stage and angular motions of the stage by laser interferometer. A piezoresistive type cantilever is used for compact and long term stability and a flexure structure with PZT and capacitive sensor is used for Z axis feedback control. Since the system is composed of various actuators and sensors, a real time control program is required for the implementation of AFM. Therefore, in this work, we designed a multi-axis control program using a FPGA module, which has various functions such as interferometer signal converting, PID control and data acquisition with triggering. The control program achieves a loop rate more than 500 kHz and will be applied for the measurement of grating pitch and step height.

  • PDF

Development of a High-throughput Micronanopatterning System Based on the Plastic Deformation Driven by Continuous Rigid Mold Edge Inscribing on Flexible Substrates (마이크로나노그레이팅 경질 몰드 모서리의 연속적 각인 소성가공 기반 유연 마이크로나노패턴의 고속 연속 제작 공정시스템 개발)

  • Lee, Seungjo;Oh, Dong Kyo;Park, Jaekyu;Kim, Jeong Dae;Lee, Jae Hyuk;Ok, Jong G.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.5
    • /
    • pp.368-372
    • /
    • 2016
  • In this study, we develop a novel high-throughput micronanopatterning system that can implement continuous mechanical pattern inscribing on flexible substrates using a rigid grating mold edge. We perform a conceptual design of the process principle, specific modeling, and buildup of a real system prototype. This research also carefully addresses several important issues related to processing and controlling, including precision motion, alignment, heating, and sensing to enable a successful micronanopatterning in a continuous and high-speed fashion. Various micronanopatterns with the desired profiles can be created by tuning the mold shape, temperature, force, and substrate material toward many potential applications involving electronics, photonics, displays, light sources, and sensors, which typically require a large-area and flexible configurations.

A Study on Flow Characteristics of PBK40 for Glass Lens Forming Process Simulation Using a Plate Heating Type (Plate 가열방식 유리렌즈 성형공정해석을 위한 PBK40 소재의 유동 특성에 관한 연구)

  • Chang, Sung-Ho;Yoon, Gil-Sang;Shin, Gwang-Ho;Lee, Young-Min;Jung, Woo-Chul;Kang, Jeong-Jin;Jung, Tae-Sung;Kim, Dong-Sik;Heo, Young-Moo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.115-122
    • /
    • 2007
  • Recently, remarkable progress has been made in both technology and production of optical elements including aspheric lens. Especially, requirements for machining glass materials have been increasing in terms of limitation on using environment, flexibility of material selection and surface accuracy. In the past, precision optical glass lenses were produced through multiple processes such as grinding and polishing, but mass production of aspheric lenses requiring high accuracy and having complex profile was rather difficult. In such a background, the high-precision optical GMP process was developed with an eye to mass production of precision optical glass parts by molding press. This GMP process can produce with precision and good repeatability special form lenses such as camera, video camera, aspheric lens for laser pickup, $f-\theta$ lens for laser printer and prism, and me glass parts including diffraction grating and V-grooved base. GMP process consist a succession of heating, forming, and cooling stage. In this study, as a fundamental study to develop molds for GMP used in fabrication of glass lens, we conducted a glass lens forming simulation. In prior to, to determine flow characteristics and coefficient of friction, a compression test and a compression farming simulation for PBK40, which is a material of glass lens, were conducted. Finally, using flow stress functions and coefficient of friction, a glass lens forming simulation was conducted.