• Title/Summary/Keyword: graphitization

Search Result 93, Processing Time 0.027 seconds

Phase Field Modeling of Graphitization in Ductile Cast Iron by Strip Casting(I);Modeling of Phases with Negligible Solubility (스트립캐스팅한 구상흑연주철 박판의 흑연화 과정에 대한 phase-field 모델링 (I);고용도가 없는 상의 모델링)

  • Kim, Sung-Gyun;Ra, Hyung-Yong
    • Journal of Korea Foundry Society
    • /
    • v.20 no.2
    • /
    • pp.129-140
    • /
    • 2000
  • This study aims at the phase-field modeling of the phase transformation in graphitization of the cast iron. As the first step, we constructed a phase-field model including the phases with negligible solubility. Under the dilute regular solution approximation, a simplified version of the phase-field model was obtained, which can be used for the phase transformation related with the stoichiometric phases. The results from the numerical calculation of the phase-field model was in good agreement with the exact analytic solution. The compositional shift due to Gibbs-Thomson effect can be reproduced within 0.5% error in the numerical calculation. The interface velocity, whereas, in numerical calculation of phase-field model appeared to be 15% larger than that from the analytic solution. This error is due to the shift of the interface position in phase-field model from the position with ${\phi}=0.5$.

  • PDF

Study on production process of graphite for biological applications of 14C-accelerator mass spectrometry

  • Ha, Yeong Su;Kim, Kye-Ryung;Cho, Yong-Sub;Choe, Kyumin;Kang, Chaewon
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.1
    • /
    • pp.20-26
    • /
    • 2020
  • Accelerator mass spectrometry (AMS) is a powerful detection technique with the exquisite sensitivity and high precision compared with other traditional analytical techniques. Accelerator mass spectrometry can be widely applied in the technique of radiocarbon dating in the fields of archeology, geology and oceanography. The ability of accelerator mass spectrometry to measure rare 14C concentrations in microgram and even sub-microgram amounts suggests that extension of 14C-accelerator mass spectrometry to biomedical field is a natural and attractive application of the technology. Drug development processes are costly, risky, and time consuming. However, the use of 14C-accelerator mass spectrometry allows absorption, distribution, metabolism and excretion (ADME) studies easier to understand pharmacokinetics of drug candidates. Over the last few decades, accelerator mass spectrometry and its applications to preclinical/clinical trials have significantly increased. For accelerator mass spectrometry analysis of biological samples, graphitization processes of samples are important. In this paper, we present a detailed sample preparation procedure to apply to graphitization of biological samples for accelerator mass spectrometry.

Thermo-electrical properties of randomly oriented carbon/carbon composite

  • Raunija, Thakur Sudesh Kumar;Supriya, N.
    • Carbon letters
    • /
    • v.22
    • /
    • pp.25-35
    • /
    • 2017
  • The aim of the work was to investigate the thermo-electrical properties of low cost and rapidly produced randomly oriented carbon/carbon (C/C) composite. The composite body was fabricated by combining the high-pressure hot-pressing (HP) method with the low-pressure impregnation thermosetting carbonization (ITC) method. After the ITC method step selected samples were graphitized at $3000^{\circ}C$. Detailed characterization of the samples' physical properties and thermal properties, including thermal diffusivity, thermal conductivity, specific heat and coefficient of thermal expansion, was carried out. Additionally, direct current (DC) electrical conductivity in both the in-plane and through-plane directions was evaluated. The results indicated that after graphitization the specimens had excellent carbon purity (99.9 %) as compared to that after carbonization (98.1). The results further showed an increasing trend in thermal conductivity with temperature for the carbonized samples and a decreasing trend in thermal conductivity with temperature for graphitized samples. The influence of the thickness of the test specimen on the thermal conductivity was found to be negligible. Further, all of the specimens after graphitization displayed an enormous increase in electrical conductivity (from 190 to 565 and 595 to 1180 S/cm in the through-plane and in-plane directions, respectively).

Optimization of Mold Coating Condition with Acetylene Soot in Continuous Casting of Copper Rod (구리봉의 연속주조금형에 사용된 아세틸렌 화염 도형의 최적화)

  • Kim, Jae-Uk;Kim, Young-Tae;Oh, Kyu-Hwan;Ra, Hyung-Yong
    • Journal of Korea Foundry Society
    • /
    • v.16 no.2
    • /
    • pp.158-164
    • /
    • 1996
  • In copper continuous casting, the soot, which is the incomplete pyrolitic product of acetylene, has been used as a mold coat. In this work, under constant acetylene pressure, the characteristics of soot and the optimum condition of sooting were investigated with different acetylene and oxygen flow rate. The soot particles deposited on the mold surface had mainly spherical shape and their sizes were about 20nm. After reaction with melt, their shapes were changed into polygonal type due to the graphitization. With increasing oxygen flow rate up to $0.6{\ell}/min$, the amount of residues of soot after heat treatment were kept nearly constant. But the amount of residues increased rapidly with further increasing oxygen flow rate. Degree of graphitization was maximum at $0.4{\ell}/min$ and $5{\ell}/min$ of oxygen and acetylene flow rate, respectively.

  • PDF

Growth Mechanism of Graphene structure on 3C-SiC(111) Surface: A Molecular Dynamics Simulation

  • Hwang, Yu-Bin;Lee, Eung-Gwan;Choe, Hui-Chae;Jeong, Yong-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.433-433
    • /
    • 2011
  • Since the concept of graphene was established, it has been intensively investigated by researchers. The unique characteristics of graphene have been reported, the graphene attracted a lot of attention for material overcomes the limitations of existing semiconductor materials. Because of these trends, economical fabrication technique is becoming more and more important topic. Especially, the epitaxial growth method by sublimating the silicon atoms on Silicon carbide (SiC) substrate have been reported on the mass production of high quality graphene sheets. Although SiC exists in a variety of polytypes, the 3C-SiC polytypes is the only polytype that grows directly on Si substrate. To practical use of graphene for electronic devices, the technique, forming the graphene on 3C-SiC(111)/Si structure, is much helpful technique. In this paper, we report on the growth of graphene on 3C-SiC(111) surface. To investigate the morphology of formed graphene on the 3C-SiC(111) surface, the radial distribution function (RDF) was calculated using molecular dynamics (MD) simulation. Through the comparison between the kinetic energies and the diffusion energy barrier of surface carbon atoms, we successfully determined that the graphitization strongly depends on temperature. This graphitization occurs above the annealing temperature of 1500K, and is also closely related to the behavior of carbon atoms on SiC surface. By analyzing the results, we found that the diffusion energy barrier is the key parameter of graphene growth on SiC surface.

  • PDF

Raman Spectroscopical Evaluations of Carbonization and Graphitization of Coal Tar Pitch

  • Kim, Y.M.;An, K.L.;Kim, C.;Choi, Y.O.;Park, S.H.;Yang, K.S.;Lee, W.E.
    • Carbon letters
    • /
    • v.1 no.1
    • /
    • pp.22-26
    • /
    • 2000
  • Raman spectroscopy has been used to investigate the structure of coal tar pitch heat-treated up to $3000^{\circ}C$ by using 514.5 run Ar ion laser line. Four critical temperature ranges were found on pyrolyzing coal tar pitch, which correspond to four distinct processes from disordered carbons to the well-ordered graphite structure. The range of heat treat temperature (HTT) below $1000^{\circ}C$ corresponds to gas evolution during the pyrolysis of coal tar pitch. Above the HTT are correlated to rearrangements of enlarged molecules, growth of the molecules along the direction of plane, finally stacking in the normal direction of the plane, in the respective HTT ranges of 1000-2000, above 2000 and $2500-3000^{\circ}C$.

  • PDF

Development of Lyocell-Based Graphite Fabric for Aerospace (항공우주용 리오셀계 흑연화 직물 개발)

  • Park, Gil-Young;Kim, Nam-Kyu;Kim, Yun-Chul;Seo, Sang-Kyu;Chung, Yong-Sik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.4
    • /
    • pp.36-42
    • /
    • 2021
  • In this study, the impregnation of Lyocell fabrics was performed using phosphoric acid, ammonium phosphate, diammonium hydrogen, triammonium phosphate as phosphorus flame retardant, to fabricate continuous graphite fabrics using lyocell fiber. The physical and chemical structure changes were investigated by thermogravimetric, Fourier-transform infrared spectroscopy, C-nuclear magnetic resonance, X-ray diffraction, and weight analyses, By analyzing the thermal behavior of phosphorus flame retardant, conditions for the temperature, gas, and residual time of the pyrolysis process were set. Graphite fabrics with a tensile strength of 1,007.19±11.47 N/5 cm and yield of 25.3% were fabricated using continuous pyrolysis, carbonization and graphitization process.

Tribological study on the thermal stability of thick ta-C coating at elevated temperatures

  • Lee, Woo Young;Ryu, Ho Jun;Jang, Young Jun;Kim, Gi Taek;Deng, Xingrui;Umehara, Noritsugu;Kim, Jong Kuk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.144.2-144.2
    • /
    • 2016
  • Diamond-like carbon (DLC) coatings have been widely applied to the mechanical components, cutting tools due to properties of high hardness and wear resistance. Among them, hydrogenated amorphous carbon (a-C:H) coatings are well-known for their low friction properties, stable production of thin and thick film, they were reported to be easily worn away under high temperature. Non-hydrogenated tetrahedral amorphous carbon (ta-C) is an ideal for industrial applicability due to good thermal stability from high $sp^3$-bonding fraction ranging from 70 to 80 %. However, the large compressive stress of ta-C coating limits to apply thick ta-C coating. In this study, the thick ta-C coating was deposited onto Inconel alloy disk by the FCVA technique. The thickness of the ta-C coating was about $3.5{\mu}m$. The tribological behaviors of ta-C coated disks sliding against $Si_3N_4$ balls were examined under elevated temperature divided into 23, 100, 200 and $300^{\circ}C$. The range of temperature was setting up until peel off observed. The experimental results showed that the friction coefficient was decreased from 0.14 to 0.05 with increasing temperature up to $200^{\circ}C$. At $300^{\circ}C$, the friction coefficient was dramatically increased over 5,000 cycles and then delaminated. These phenomenon was summarized two kinds of reasons: (1) Thermal degradation and (2) graphitization of ta-C coating. At first, the reason of thermal degradation was demonstrated by wear rate calculation. The wear rate of ta-C coatings showed an increasing trend with elevated temperature. For investigation of relationship between hardness and graphitization, thick ta-C coatings(2, 3 and $5{\mu}m$) were additionally deposited. As the thickness of ta-C coating was increased, hardness decreased from 58 to 49 GPa, which means that graphitization was accelerated. Therefore, now we are trying to increase $sp^3$ fraction of ta-C coating and control the coating parameters for thermal stability of thick ta-C at high temperatures.

  • PDF