• Title/Summary/Keyword: graphite nafion

Search Result 9, Processing Time 0.028 seconds

Effect of Fabrication Method of Anode on Performance in Enzyme Fuel Cells (효소연료전지의 Anode 제조조건이 성능에 미치는 영향)

  • Lee, Se-Hoon;Hwang, Byung-Chan;Lee, Hye-Ri;Kim, Young-Sook;Chu, Cheun-Ho;Na, Il-Chai;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.667-671
    • /
    • 2015
  • Enzyme fuel cells were operated with cells composed of enzyme anode and PEMFC cathode. Enzyme anodes was fabricated by compression of a mixture of graphite particle, glucose oxidase(Gox) as a enzyme and ferrocene as a redox mediator, and then coated with Nafion ionomer solution. Performances of enzyme unit cell were measured with variation of anode manufacture factors, to find optimum condition of enzyme anode. Optimum pressure was 8.89MPa for enzyme anode pressing process. Highest power density was obtained at 60% graphite composition in enzyme anode. Optimum glucose concentration was 1.7 mol/l in anode substrate solution. The enzyme anode was stabilized by two times of deeping in Nafion solution for 1 sec.

Detecting gold by voltammetric handhold systems

  • Kim, Nack-Joo;Choi, Dal-Woong;Yoo, Hai-Soo;Lee, Kyung;Lee, Chang-Hyun;Ly, Suw-Young;Kim, Tae-Yun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.472-477
    • /
    • 2014
  • A voltammetric investigation of Au assay was conducted at a low cost, using Nafion and DNA immobilized on a graphite Pencil working electrode (NDP) with a black lead counter and reference. The following optimal parameters were found: 0.4 V amplitude, 500 Hz frequency, -0.7 V initial potential, and 0.015 V increment potential. These optimal conditions were also applied to sand obtained from the river site. The aforementioned technique is simpler and less costly compared to the common voltammetry and spectrophotometric methods.

Effect of Fabrication Method of Anode on OCV in Enzyme Fuel Cells (효소연료전지의 Anode 제조조건이 OCV에 미치는 영향)

  • Kim, Young-Sook;Lee, Se-Hoon;Chu, Cheun-Ho;Na, Il-Chai;Lee, Ho;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.6-10
    • /
    • 2015
  • Enzyme fuel cells were composed of enzyme anode and PEMFC cathode. Enzyme anodes was fabricated by compression of a mixture of graphite particle, glucose oxidase as a enzyme and ferrocene as a mediator, and then coated with Nafion ionomer. Open circuit voltage (OCV) were measured with variation of anode manufacture factors, to find optimum condition of enzyme anode. Optimum pressure was 9.0 MPar for enzyme anode pressing process. Highest OCV was obtained at 60% graphite composition in enzyme anode. Optimum glucose concentration was 1.7mol/l in anode substrate solution and enzyme activity of anode was stable for 7 days.

Effect of Fabrication Method of Cathode on OCV in Enzyme Fuel Cells (효소연료전지의 Cathode 제조조건이 OCV에 미치는 영향)

  • Lee, Se-Hoon;Kim, Young-Sook;Chu, Cheun-Ho;Na, Il-Chai;Lee, Jung-Hoon;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.171-174
    • /
    • 2016
  • Enzyme fuel cells were composed of enzyme cathode and PEMFC anode. Enzyme cathode was fabricated by compression of a mixture of graphite particle, laccase as a enzyme and ABTS as a redox mediator, and then coated with Nafion ionomer. Open circuit voltage (OCV) were measured with variation of cathode manufacture factors, to find optimum condition of enzyme cathode. Optimum pressure was 4.0 bar for enzyme cathode pressing process. Highest OCV was obtained at 95% graphite composition in enzyme cathodee. Optimum glucose concentration was 0.4 mol/l in cathode substrate solution.

Diagnostic ex vivo assay of glucose in live cell using voltammetry

  • Ly, Suw Young;Leea, Chang Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1379-1385
    • /
    • 2018
  • The hand held voltammetry systems searched diabetic assay using glucose sensor of fluorine nafion doped carbon nanotube electrode (FCNE). An inexpensive graphite carbon pencil was used as an Ag/AgCl reference and Pt counter electrode. Upon combining and using three electrode systems, optimum square wave (SW) stripping results were attained to 1.0-9.0 ug/L with 8 points. Statistic RSD precision was of 6.02 % with n=15 in 0.1 mg/L glucose. After a total of 200 second accumulation times, analytical detection limit of 0.8 ug/L was obtained. This developed technique was applied to urine samples from diabetic patients urine for fluid analysis, it was determined that the sensor can be used with a diagnostics in the ex vivo of live cells and non treated biological fluid.

Effect of Epoxy Mixed with Nafion Solution as an Anode Binder on the Performance of Microbial Fuel Cell (산화전극 결합제로서 나피온용액에 혼합된 에폭시가 미생물연료전지의 성능에 미치는 영향)

  • Song, Young-Chae;Kim, Dae-Seop;Woo, Jung-Hui
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • The composite anodes of exfoliated graphite (EG) and multiwall carbon nanotube (MWCNT) were fabricated by using the binders with different content of epoxy in Nafion solution. The influence of the epoxy content in the anode binder on the performance of microbial fuel cell (MFC) was examined in a batch reactor. With the increase in the epoxy content in the anode binder, increase in physical binding force was observed, but at the same time an increase in the internal resistance of MFC was also observed. This was due to the increase in activation and ohmic resistance. For the anode binder without epoxy, the maximum power density was $1,892mW/m^2$, but a decrease in maximum power density was observed with the increase in the epoxy content in the anode binder. With the epoxy content of 50% in the anode binder, a decrease in the maximum power density to $1,425mW/m^2$ was observed, which about 75.3% of the anode binder without epoxy is. However, the material consisting of the same amount of epoxy and Nafion solution is a good alternative for anode binder in terms of durability and economics of MFC.

Improvement of Anodic Performance by Using CTP Binder Containg Nickel (니켈을 함유한 콜타르 피치 결합제를 이용한 미생물연료전지 산화전극 성능개선)

  • Yoon, Hyung-Sun;Song, Young-Chae;Choi, Tae-Seon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.9
    • /
    • pp.499-504
    • /
    • 2015
  • The composite anodes of expanded graphite (EG) and multiwall carbon nanotube (MWCNT) for microbial fuel cells were fabricated by using coal tar pitch (CTP) binder containing nickel (Ni), and the effect of the anodes with the binders on the performance of the MFCs were examined in a batch reactor. During the start-up of the MFCs, quick increase in voltage was observed after a short lag phase time, indicating that the CTP binder is biocompatible. The biomass attatched on the anode surface was more at higher Ni content in the binder, as well as at smaller amount of CTP binder for the fabrication of the anode. The internal resistance of the MFC was smaller for the anode with more biomass. Based on the results, the ideal combination of CTP and Ni for the CTP binder for anode was 2 g and 0.2 g, respectively. The maximum power density was $731.8mW/m^2$, which was higher 23.7% than the anode with Nafion binder as control. The CTP binder containing Ni for the fabrication of anode is a good alternative in terms of performance and economics of MFCs.

Synthesis and Characterization of Phase Pure NiO Nanoparticles via the Combustion Route using Different Organic Fuels for Electrochemical Capacitor Applications

  • Srikesh, G.;Nesaraj, A. Samson
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.16-25
    • /
    • 2015
  • Transition metal oxide nanocrystalline materials are playing major role in energy storage application in this scenario. Nickel oxide is one of the best antiferromagnetic materials which is used as electrodes in energy storage devices such as, fuel cells, batteries, electrochemical capacitors, etc. In this research work, nickel oxide nanoparticles were synthesized by combustion route in presence of organic fuels such as, glycine, glucose and and urea. The prepared nickel oxide nanoparticles were calcined at 600℃ for 3 h to get phase pure materials. The calcined nanoparticles were preliminarily characterized by XRD, particle size analysis, SEM and EDAX. To prepare nickel oxide electrode materials for application in supercapacitors, the calcined NiO nanoparticles were mixed with di-methyl-acetamide and few drops of nafion solution for 12 to 16 h. The above slurry was coated in the graphite sheet and dried at 50℃ for 2 to 4 h in a hot air oven to remove organic solvent. The dried sample was subjected to electrochemical studies, such as cyclic voltammetry, AC impedance analysis and chrono-coulometry studies in KOH electrolyte medium. From the above studies, it was found that nickel oxide nanoparticles prepared by combustion synthesis using glucose as a fuel exhibited resulted in low particle diameter (42.23 nm). All the nickel oxide electrodes have shown better good capacitance values suitable for electrochemical capacitor applications.

A Study on Detection Characteristics of Cadmium and Lead for Bi Nanopowder-Labeled Electrode (비스무스 나노분말 표지 전극의 카드뮴/납 검출특성에 관한 연구)

  • Lee, Gyeoung-Ja;Kim, Hyoun-Jin;Lee, Hi-Min;Lee, Sang-Hoon;Lee, Min-Ku;Lee, Chang-Kyu
    • Journal of Powder Materials
    • /
    • v.15 no.5
    • /
    • pp.393-398
    • /
    • 2008
  • Trace analysis of Cd and Pb at surface modified thick film graphite electrode with Bi nanopowder has been carried out using square-wave anodic stripping voltammetry (SWASV) technique. Bi nanopowder synthesized by gas condensation (GC) method showed the size of $50{\sim}100$ nm with BET surface area, $A_{BET}=6.8m^{2}g^{-l}$. For a strong adhesion of the Bi nanopowder onto the screen printed carbon paste electrode, nafion solution was added into Bi-containing suspension. From the SWASV, it was found that the Bi nanopowder electrode exhibited a well-defined responses relating to the oxidations of Cd and Pb. The current peak intensity increased with increasing concentration of Cd and Pb. From the linear relationship between Cd/Pb concentrations and peak current, the sensitivity of the Bi nanopowder electrode was quantitatively estimated. The detection limit of the electrode was estimated to be $0.15{\mu}g/l$ and $0.07{\mu}g/l$ for Cd and Pb, respectively, on the basis of the signal-to-noise characteristics (S/N=3) of the response for the $1.0{\mu}g/l$ solution under a 10 min accumulation.