• 제목/요약/키워드: graphite fiber

검색결과 150건 처리시간 0.024초

광섬유센서를 이용한 우주환경하에서 복합재료 적층시편의 노화에 따른 열팽창계수변화 측정 (Measurement of CTE Change in a Composite Laminate with Aging under Space Environment using Fiber Optic Sensors)

  • 강상국;강동훈;김천곤;홍창선
    • 한국항공우주학회지
    • /
    • 제31권10호
    • /
    • pp.21-26
    • /
    • 2003
  • 본 논문에서는 광섬유 센서를 사용하여 우주환경하에 노출된 그래파이트/에폭시 복합재 적층판의 열팽창계수의 변화를 측정하였다. 열변형률과 온도를 동시에 측정하기 위해서 두개의 FBG 센서를 사용하였다. 또한 열-진공 챔버를 사용하여 고진공, 자외선, 열적 사이클 등의 인자를 가지는 저궤도(LEO) 우주환경을 모사하였다. 예비실험으로써, 본 실험에서 사용되는 온도범위에 대해 FBG 온도센서를 기준온도계로부터 보정하였고 알루미늄 시편에 부착된 FBG 변형률 센서와 변형률 게이지(ESG)의 비교실험을 통해 FBG 변형률 센서의 사용가능성을 검증하였다. 검증된 FBG센서가 삽입된 그래파이트/에폭시 복합재 평판을 모사된 우주환경에 노출하여 일정한 노화간격마다 열팽창계수 변화를 실시간으로 측정하였다. 실험결과 1000 사이클 노화후의 열팽창계수는 노화전에 비해 대체적으로 큰 변화는 없었지만 전 온도구간에서 약간 감소하는 경향을 보였다. 이러한 현상은 가스방출(outgassing), 수분방출, 모재균열 등에 기인한다.

곡면형 비대칭 압전복합재료 작동기 LIPCA의 설계해석/제작/성능평가 (Design Analysis/Manufacturing /Performance Evaluation of Curved Unsymmetrical Piezoelectric Composite Actuator LIPCA)

  • 구남서;신석준;박훈철;윤광준
    • 대한기계학회논문집A
    • /
    • 제25권10호
    • /
    • pp.1514-1519
    • /
    • 2001
  • This paper is concerned with design, manufacturing and performance test of LIPCA ( Lightweight Piezo- composite Curved Actuator) using a top carbon fiber composite layer with near -zero CTE(coefficient of thermal expansion), a middle PZT ceramic wafer and a bottom glass/epoxy layer with high CTE. The main point of this design is to replace the heavy metal layers of THUNDER by thigh tweight fiber reinforced plastic layers without losing capabilities to generate high force and large displacement. It is possible to save weight up to about 30% if we replace the metallic backing material by the light fiber composite layer. We can also have design flexibility by selecting the fiber direction and the size of prepreg layers. In addition to the lightweight advantage and design flexibility, the proposed device can be manufactured without adhesive layers when we use epoxy resin prepreg system. Glass/epoxy prepregs, a ceramic wafer with electrode surfaces, and a graphite/epoxy prepreg were simply stacked and cured at an elevated temperature (177 $^{circ}C$ after following an autoclave bagging process. It was found that the manufactured composite laminate device had a sufficient curvature after detached from a flat mold. The analysis method of the cure curvature of LIPCA using the classical lamination theory is presented. The predicted curvatures are fairly in agreement with the experimental ones. In order to investigate the merits of LIPCA, a performance test of both LIPCA and THUNDE$^{TM}$ were conducted under the same boundary conditions. From the experimental actuation tests, it was observed that the developed actuator could generate larger actuation displacement than THUNDERT$^{TM}$.

원공조치를 가진 탄소섬유강화 플라스틱 적층판의 피로수명에측 (Fatigue Life Prediction of Circular Notched CFRP Laminates)

  • 허재석;황운봉;박현철;한경섭
    • 대한기계학회논문집A
    • /
    • 제20권3호
    • /
    • pp.832-842
    • /
    • 1996
  • Fatigue life prediction and fatigue behavior of circular notched carbon fiber reinforced plastic laminates are presented. Point and average stress criteria by Whitney and Nuismer are generalized to fatigue fracture criteria for notched laminates. Residual strength degradation model and the assumptions on the stress redistribution are introduced during the derivation of prediction equations. S-N curve, Basquin's relation, and H and H's FLPE1 are chosen for evaluation of residual strength of unnotched laminates and six prediction equations are derived. Experiments are performed using Graphite/Epoxy laminates whose fiber orientation is $[0$^\circ$/+45$^\circ$/-45$^\circ$/90$^\circ$]s. Presented prediction equations are reasonably close to experimental data and proposed appoach is found to be suitable to predict fatigue life of notched composite laminates.

섬유 보강 복합재료의 미시역학적 거동 해석 (Analysis of Micromechanical Behavior for Fiber-Reinforced Composites)

  • 정재연;하성규
    • 대한기계학회논문집A
    • /
    • 제28권10호
    • /
    • pp.1435-1450
    • /
    • 2004
  • The investigation, which includes the material homogenization and the calculation of local stress concentration of long-fibrous composites in a microscopic level, has been performed to analyze the behavior of fiber-reinforced composites by using finite element method. In order to carry out this study, the finite element models of composites have been generated by the idealized arrays as square and hexagonal-packed type. In the FE analysis, the boundary conditions of micromechanical finite element method(MFEM) have been defined and verified by comparing with the results from multi-cells, and the effective material properties of composites composed of graphite/epoxy have been also evaluated by rules of mixture. For acquiring the relation between the global and local behaviors of composites, the magnifications of strain, stress, and interfacial stress of composites subjected to a longitudinal and transverse loading respectively have been calculated. And the magnifications have been proposed as the stress concentration in the microscopic level at composite material.

Brake Pad용 청동기지 복합재료의 마찰.마모특성에 관한 연구(I) (Study on the Tribo-Characteristics of Tin-Bronze Matrix Material for Brake Pad)

  • 송건;황순홍;공호성;최웅수;정동윤;허영무
    • Tribology and Lubricants
    • /
    • 제12권4호
    • /
    • pp.18-27
    • /
    • 1996
  • An interlaboratory wear testing was performed in order to understand the friction behaviors and the wear mechanisms of the sintered composites. The specimens were the sintered bronze matrix composites having various contents of friction additives, friction control agents and reinforcements. The variation of the wear characteristics according to the constituents of the composites as well as the wear conditions was investigated by SEM, EPMA, OM, the hardness testing and the measurement of friction. The specimen having glass fiber as the matrix reinforcement showed a remarkable increase in wear resistance as increasing the content of glass fiber. Graphite particles in the composites exhibited the lubricating effect and also resulted in the lowering strength of the matrix. Addition of Mo powder to the composites led to the deterioration of wear properties at the room temperature, however, an enhanced wear properties were obtained in the containing Mo at an elevated temperature.

3D Hierarchical Flower-Like Cobalt Ferrite Nanoclusters-Decorated Cotton Carbon Fiber anode with Improved Lithium Storage Performance

  • Meng, Yanshuang;Cheng, Yulong;Ke, Xinyou;Ren, Guofeng;Zhu, Fuliang
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권2호
    • /
    • pp.285-295
    • /
    • 2021
  • The inverse spinel Cobalt ferrite (CoFe2O4, CFO) is considered to be a promising alternative to commercial graphite anodes for lithium ion batteries (LIBs). However, the further development of CFO is limited by its unstable structure during battery cycling and low electrical conductivity. In an effort to address the challenge, we construct three-dimensional hierarchical flower-like CFO nanoclusters (CFO NCs)-decorated carbonized cotton carbon fiber (CFO NCs/CCF) composite. This structure is consisted of microfibers and nanoflower cluster composited of CFO nanoparticle, in which CCF can be used as a long-range conductive matrix, while flower-like CFO NCs can provide abundant active sites, large electrode/electrolyte interface, short lithium ion diffusion path, and alleviated structural stress. As anode materials in LIBs, the flower-like CFO NCs/CCF exhibits excellent electrochemical performance. After 100 cycles at a current density of 0.3 A g-1, the CFO NCs/CCF delivers a discharge/charge capacity of 1008/990 mAh g-1. Even at a high current density of 15 A g-1, it still maintains a charge/discharge capacity of 362/361 mAh g-1.

Sports balls made of nanocomposite: investigating how soccer balls motion and impact

  • Ling Yang;Zhen Bai
    • Advances in nano research
    • /
    • 제16권4호
    • /
    • pp.353-363
    • /
    • 2024
  • The incorporation of nanoplatelets in composite and polymeric materials represents a recent and innovative approach, holding substantial promise for diverse property enhancements. This study focuses on the application of nanocomposites in the production of sports equipment, particularly soccer balls, aiming to bridge the gap between theoretical advancements and practical implications. Addressing the longstanding challenge of suboptimal interaction between carbon nanofillers and epoxy resin in epoxy composites, this research pioneers inventive solutions. Furthermore, the investigation extends into unexplored territory, examining the integration of glass fiber/epoxy composites with nanoparticles. The incorporation of nanomaterials, specifically expanded graphite and graphene, at a concentration of 25.0% by weight in both the epoxy structure and the composite with glass fibers demonstrates a marked increase in impact resistance compared to their nanomaterial-free counterparts. The research transcends laboratory experiments to explore the practical applications of nanocomposites in the design and production of sports equipment, with a particular emphasis on soccer balls. Analytical techniques such as infrared spectroscopy and scanning electron microscopy are employed to scrutinize the surface chemical structure and morphology of the epoxy nanocomposites. Additionally, an in-depth examination of the thermal, mechanical, viscoelastic, and conductive properties of these materials is conducted. Noteworthy findings include the efficacy of surface modification of carbon nanotubes in preventing accumulation and enhancing their distribution within the epoxy matrix. This optimization results in improved interfacial interactions, heightened thermal stability, superior mechanical properties, and enhanced electrical conductivity in the nanocomposite.

Viscoelastic analysis of residual stresses in a unidirectional laminate

  • Lee, Sang Soon;Sohn, Yong Soo
    • Structural Engineering and Mechanics
    • /
    • 제2권4호
    • /
    • pp.383-393
    • /
    • 1994
  • The residual stress distribution in a unidirectional graphite/epoxy laminate induced during the fabrication process is investigated at the microstress level within the scope of linear viscoelasticity. To estimate the residual stresses, the fabrication process is divided into polymerization phase and cool-down phase, and strength of materials approach is employed. Large residual stresses are not generated during polymerization phase because the relaxation modulus is relatively small due to the relaxation ability at this temperature level. The residual stresses increase remarkably during cool-down process. The magnitude of final residual stress is about 80% of the ultimate strength of the matrix material at room temperature. This suggests that the residual stress can have a significant effect on the performance of composite structure.

직접 메탄올 연료전지에서 담지체로서의 GW 응용 (Application of Graphite Nano-fiber as a supporting material in the DMFC)

  • 박인수;박경원;최종호;김영민;정두환;성영은
    • 한국전기화학회:학술대회논문집
    • /
    • 한국전기화학회 2002년도 연료전지심포지움 2002논문집
    • /
    • pp.197-200
    • /
    • 2002
  • The electrooxidation of methanol was studied using carbon-supported PtRu(1:1) alloy nanoparticles In sulfuric acid solution for application to a direct methanol fuel cell. The GNF-supported catalyst showed excellent catalytic activities compared to those of Vulcan XC-72. The structure and electrocatalytic activity of carbon-supported electrocatalyst were investigated using X-ray diffraction (XRD), Transmission electron microscopy (TEM), cyclic voltammetry (CV), chronoamperometry (CA), X-ray photoelectron spectroscopy (XPS). The CV and CA confirmed the advantage of GNF as the supporting material. This can be explained by assuming that the enhanced activities of GNF-supported catalyst for methanol electrooxidation were caused by the unique properties of GNF.

  • PDF

탄소섬유/에폭시 복합재(CFRP)의 표면처리가 금속재/CFRP의 전단강도에 미치는 영향에 대한 연구 (Effect of Graphite/Epoxy (CERP) Surface Treatment on the Shear Strength of CERP/Metal Composites)

  • 지창헌;양준호
    • 한국표면공학회지
    • /
    • 제34권3호
    • /
    • pp.225-230
    • /
    • 2001
  • In this study, the effect of surface treatment of CFRP (Carbon Fiber Reinforced Composites) on the shear strength of CFRP/metal composites was investigated. The surface of 14 plied unidirectional (0-dog ) CFRP was treated by an $Ar^{/}$ + ion beam under an oxygen environment. Shear strength tests were performed using SLS (Single Lap Shear) specimens based on the ASTM D906-94a procedure. The shear strength of the surface-treated CFRP/metal composites was compared with that of the untreated CFRP/metal composites. The results showed that the shear strength of surface-treated CFRP/metal composites was 36% greater than that of untreated CFRP/metal composites.

  • PDF