• Title/Summary/Keyword: graphite electrode

Search Result 254, Processing Time 0.036 seconds

X-ray Absorption Spectroscopy of a Poly Sodium 4-Styrensulfonate Intercalated Graphite Oxide Electrode

  • Jeong, Hye-Gyeong;Park, Byeong-Gyu;Kim, Jae-Yeong;No, Han-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.393-393
    • /
    • 2011
  • We investigated the electronic structures of a poly sodium 4-styrensulfonate intercalated graphite oxide (PSSGO) electrode and a precursor graphite oxide (GO) electrode using X-ray absorption spectroscopy (XAS). Both electrodes were obtained from electrochemical cells. We found that in the C K-edge XAS spectra the ${\pi}^*$ state intensity originating from the sp2 hybridization of graphite decreases predominantly in the graphite oxide and PSSGO electrodes. This indicates that the negatively charged electrolyte ion (BF4-) is absorbed onto the electrodes and is transferred to the ${\pi}^*$ state of the both electrodes. The analysis of their F K-edge spectra reveals that more BF4- ions were found in the PSSGO electrode than in the graphite oxide electrode. This indicates that more electrolyte ions are absorbed in the PSSGO than in the graphite oxide electrode. We argue that this is the main reason why PSSGO cells have higher capacitance, higher energy density, and higher power density when compared to the graphite oxide cells. We also found that BF4- is the primary working ion that can be inserted into the interlayers of the PSSGO electrode.

  • PDF

Influence on Relative Electrode Wear by Material and Size of Electrode (전극의 재료와 크기가 전극소모에 미치는 영향)

  • 전언찬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.671-677
    • /
    • 1999
  • This study has been performed to investigate REW(relative electrode wear) in condition of vari-ous pulse-on duration using the copper and graphite electrode with change of the electrode size on the heat treated STD11 which is extensively used for metallic molding steel with the EDM. The results obtained are as follows; a) Graphite has much benefits than copper electrode when rapid machining is done without electrode wear, b) Neative REW result from the electrode that is very liable attach to decomposition carbide c)Increasing of machining time cause to increase wear length of the copper electrode and decrease wear length of the graphite electorde d)The more pulse-on duration copper electrode has the less REW. e) The edge portion of the electorde wears remarkably at the beginning of machining,.

  • PDF

Electric Conduction Properties of NaCl Electrolyte as a Function of Electrode Materials (전극재료에 따른 NaCl 전해질의 전기전도특성)

  • Kim, Yong-Hyuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.2026-2031
    • /
    • 2010
  • The electrical characteristics of galvanic cell which is composed of the cathode electrode(graphite, carbon and copper) and the anode electrode(Zn and Mg) were investigated. For this research as electrolyte 2~12 wt% NaCl aqueous solution were used. At graphite cathode electrodes which use Zn and Mg with the anode electrode, the open circuit voltage was 1.3V most highly. The maximum output power increased as the electrolyte concentration increased, due to a increase in ion density. When Zn and Mg with the anode electrode, the maximum output power respectively was evaluated as 2.2mW and 5.5mW about the graphite cathode electrode in the NaCl 4wt%. The research results indicated that the output power of cell which is composed with graphite with the cathode and Mg with the anode was most excellent and the efficiency of the cell could be enhanced by increasing the electrolyte concentration.

A study on the characteristics of EDM with the electrode materials (전극 소재에 따른 방전가공 특성에 관한 연구)

  • Jung T.S.;Lee S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.569-570
    • /
    • 2006
  • In this study, the characteristics of Electrical Discharge Machining (EDM) with the electrode materials were investigated. EDM experiments have been carried out on electrodes with eight different copper-based and graphite-based materials. From the results, the copper-based electrodes showed excellent surface roughness than the graphite-based electrodes. But graphite based electrodes have advantages in economic aspects.

  • PDF

Decolorization of a Rhodamine B Using Ru-graphite Electrode (Ru-흑연 전극을 이용한 Rhodamine B의 색 제거)

  • Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.17 no.5
    • /
    • pp.547-553
    • /
    • 2008
  • For the RhB removal from the wastewater, electrochemical method was adapted to this study. Three dimensionally stable anode (Pt, Ir and Ru) and graphite and Ru cathode were used. In order to identify decolorization, the effects of electrode, current density, electrolyte and air flow rate were investigated. The effects of electrode material, current, electrolyte concentration and air flow rate were investigated on the decolorization of RhB. Electro-Fenton's reaction was evaluated by added $Fe^{2+}$ and $H_2O_2$ generated by the graphite cathode. Performance for RhB decolorization of the four electrode systems lay in: Ru-graphite > Ru-Ru > Ir-graphite > Pt-graphite. A complete color removal was obtained for RhB (30 mg/L) at the end of 30 min of electrolysis under optimum operations of 2 g/L NaCl concentration and 2 A current. $Fe^{2+}$ addition increased initial reaction and decreased final RhB concentration. However the effect was not high.

Synthesis and Characterization of Graphene Counter Electrode By Electrophoretic Deposition for Dye-Sensitized Solar Cells

  • Choe, Yun-Su;Gong, Jae-Seok;Choe, Hyeon-Gwang;Jeon, Min-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.160-160
    • /
    • 2013
  • Dye-sensitized solar cells (DSSCs) have attracted much attention because of their moderate light-to-electricity conversion efficiency, easy fabrication, and low cost. At present, platinum (Pt) is used as a counter electrode in DSSCs. However, it is found that Pt dissolves in iodide electrolyte solutions and creates chemical compound such as PtI4 and H2PtI6. Carbon based materials are one of candidates for a counter electrode of DSSCs. We prepare two types of graphite oxides by different chemical treatments; original graphite oxide, hydrazine treated graphite oxide. Each graphite oxide and magnesium nitrate dispersed in deionized water are prepared as solutions for electrophoretic deposition (EPD). Each graphite oxide electrode is deposited on fluorine-doped tin oxide (FTO) substrate by EPD method. Structural and electrochemical properties of each electrode are investigated by field-emission scanning electron microscopy and electrochemical impedance spectroscopy, respectively.

  • PDF

Improvement of Cathode Reaction of Vanadium Redox Flow Battery by Reforming Graphite Felt Electrode Using Cobalt Oxide (바나듐 레독스 흐름전지 양극 반응 향상을 위한 코발트 산화물 전극 개질법 연구)

  • Park, Jeongmok;Ko, Minseong
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.3
    • /
    • pp.180-185
    • /
    • 2019
  • The demands to improve the performance of the vanadium redox flow battery have attracted an intense research on modifying the carbon-based electrode. In this study, the surface of graphite felt was reformed, using cobalt oxide. The cobalt oxide was implanted into graphite felt during hydrothermal and two step heat treatments. The cobalt was deposited by hydrothermal method and the two step heat treatments made lots of holes on the graphite felt surface which is called as porous surface. The porous surface acts as an electrochemically active site for the cathodic reaction of vanadium redox flow battery. The reformed electrode shows the electrochemically improved performance compared with the pristine electrode.

Influence on Metal Removal Rate by Material and Size Difference of the Electrode (전극의 재료와 크기가 방전가공량에 미치는 영향)

  • 김희중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.809-815
    • /
    • 1998
  • This study has been performed to investigate MRR(metal removal rate) surface roughness with various pulse-on duration using the copper and graphite electrode according to the electrode size on the heat treated STD 11 which is extensively used for metallic molding steel in the EDM. The results obtained are as follow ;a)MRR increases a lot when pulse-on duration is 100 $\mu{s}$ or less but MRR has little difference with pulse-on duration of 100 $\mu{s}$ or more b) According to the increase of Pulse-on duration the large the electrode size the more MRR c) Safe discharge is needed to make maximum of MRR and the metallic organization must be complicated for discharge induction. d) Actual machining time is longer than theoretical machining time at the short pulse-on duration because of skin effect of current. e) Graphite electrode needs the larger electric discharge energy than copper electrode to remove remained chips completely.

  • PDF

Electrochemical Properties of Graphite-based Electrodes for Redox Flow Batteries

  • Kim, Hyung-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.571-575
    • /
    • 2011
  • Graphite-based electrodes were prepared using synthetic graphite (MCMB 1028) or natural graphite (NG) powder using a dimensionally stable anode (DSA) as a substrate. Their electrochemical properties were investigated in vanadiumbased electrolytes to determine how to increase the durability and improve the energy efficiency of redox flow batteries. Cyclic voltammetry (CV) was performed in the voltage range of -0.7 V to 1.6 V vs. SCE at various scan rates to analyze the vanadium redox reaction. The graphite-based electrodes showed a fast redox reaction and good reversibility in a highly concentrated acidic electrolyte. The increased electrochemical activity of the NG-based electrode for the $V^{4+}/V^{5+}$ redox reaction can be attributed to the increased surface concentration of functional groups from the addition of conductive material that served as a catalyst. Therefore, it is expected that this electrode can be used to increase the power density and energy density of redox flow batteries.

Catalytic Oxidoreduction of Pyruvate/Lactate and Acetaldehyde/Ethanol Coupled to Electrochemical Oxidoreduction of $NAD^+$/NADH

  • Shin, In-Ho;Jeon, Sung-Jin;Park, Hyung-Soo;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.540-546
    • /
    • 2004
  • We deviced a new graphite-Mn(II) electrode and found that the modified electrode with Mn(II) can catalyze NADH oxidation and $NAD^+$ reduction coupled to electricity production and consumption as oxidizing agent and reducing power, respectively. In fuel cell with graphite-Mn(II) anode and graphite-Fe(III) cathode, the electricity of 1.5 coulomb (A x s) was produced from NADH which was electrochemically reduced by the graphite-Mn(II) electrode. When the initial concentrations of pyruvate and acetaldehyde were adjusted to 40 mM and 200 mM, respectively, about 25 mM lactate and 35 mM ethanol were produced from 40 mM pyruvate and 200 mM acetaldehyde, respectively, by catalysis of ADH and LDH in the electrochemical reactor with $NAD^+$ as cofactor and electricity as reducing power. By using this new electrode with catalytic function, the bioelectrocatalysts are engineered; namely, oxidoreductase (e.g., lactate dehydrogenase) and $NAD^+$ can function for biotransformation without electron mediator and second oxidoreductase for $NAD^+$/NADH recycling.