• Title/Summary/Keyword: graphite coating

Search Result 141, Processing Time 0.024 seconds

Electrochemical Characteristics of Artificial Graphite Anode Coated with Petroleum Pitch treated by Solvent (용매 처리 석유계 피치로 코팅된 인조 흑연 음극소재의 전기화학적 특성)

  • Jo, Yoon Ji;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.5-10
    • /
    • 2019
  • In this study, electrochemical characteristics of artificial graphite coated with petroleum pitch using solvent method as anode material of lithium ion battery were investigated. As the solvent, n-hexane, toluene, tetrahydrofuran and quinoline were used. The surface of the prepared anode material was analyzed by SEM and TEM. Also the electrochemical performances of the prepared anode materials were performed by constant current first charge/discharge, cycle, cyclic voltammetry and impedance tests in the electrolyte of $LiPF_6$ dissolved inorganic solvents (EC:DEC=1:1 vol%). The coating thickness of the prepared graphite was about 100-500 nm and the graphite coated with THF solvent had a smoother surface than that using other solvents. It was found that pitch-coated graphite (THF) show the low initial irreversible capacity (51 mAh/g), the high discharge capacity (360 mAh/g) and coulombic efficiency (99%).

Compressive Fracture Behavior of ATJ Graphite for Rocket Nozzle (로켓 노즐목에 이용되는 ATJ 그라파이트 압축거동 평가)

  • Choi, Hoon Seok;Seo, Bo Hwi;Kim, Jae Hoon;Moon, Soon Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1435-1440
    • /
    • 2014
  • The effects of the specimen size and temperature on the compressive strength of ATJ graphite were investigated. Compressive tests were conducted in accordance with ASTM C 965 at room temperature, $700^{\circ}C$ and $900^{\circ}C$. Three types of cylindrical specimen at room temperature were used in uniaxial tests, where the diameter-to - length ratios were one to two for the ASTM standard specimen, one to one for the Type I specimen, and one to 0.5 for the Type II specimen. Two kinds of cylindrical specimens, with and without antioxidant coating, were tested at elevated temperature. The Compressive strength of the expanded specimens(Type I, II) were slightly higher than that of standard specimen at room temperature. The compressive strength of a specimen with antioxidant coating increased as the temperature increased to $900^{\circ}C$. In contrast, that of the non-coated specimen decreases sharply due to the oxidation of the specimen.

A Study on the Tribological Characteristics of Low Friction Coating Deposited on SUJ2 Bearing Steel (고탄소크롬 베어링강 2종(SUJ2) 베어링강에 증착된 저마찰 코팅의 트라이볼로지적 특성 연구)

  • Kang, Kyung-Mo;Shin, Dong-Gap;Park, Young-Hun;Kim, Se-Woong;Kim, Dae-Eun
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.254-261
    • /
    • 2018
  • In order to reduce resistance torque and energy loss, minimizing friction between race surface and rolling elements of a bearing is necessary. Recently, to reduce friction in bearing element, solid lubricant coating for the bearing raceway surface has been receiving much attention. Considering the operating conditions of real bearings, verifying the effect of solid lubricant coatings under extreme conditions of high load that is more than 1 GPa is necessary. In this study, we evaluated the friction and wear characteristics of SUJ2 bearing steels deposited by carbon-based coatings (Si-DLC, ta-C), $MoS_2$ and graphite. In case of $MoS_2$ and graphite coatings, different surface treatments were applied to the coatings to verify the effect of surface treatment. A pin-on-disc type tribotester was used to evaluate the tribological characteristics of the coatings. It was possible to quantitatively estimate the friction and wear characteristics of solid lubricant under dry and lubrication conditions. The carbon-based coatings improved the friction and wear properties of SUJ2 bearing steels under the high load condition, but $MoS_2$ and graphite coatings were not suitable for high load conditions due to its low hardness. Different friction and wear behaviors were found for different substrate surface treatment method. Also, it was confirmed that solid lubricant coatings had a more positive effect than just applying the lubricant for improving the tribological characteristics.

Development of Composite Bipolar Plate for Vanadium Redox Flow Battery (바나듐 레독스 흐름 전지용 복합재료 분리판 개발)

  • Lim, Jun Woo
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.148-154
    • /
    • 2021
  • Carbon/epoxy composite bipolar plate (BP) is a BP that is likely to replace existing graphite bipolar plate of vanadium redox flow cell (VRFB) due to its high mechanical properties and productivity. Multi-functional carbon/epoxy composite BP requires graphite coating or additional surface treatment to reduce interfacial contact resistance (ICR). However, the expanded graphite coating has the disadvantage of having low durability under VRFB operating conditions, and the surface treatments incur additional costs. In this work, an excessive resin absorption method is developed, which uniformly removes the resin rich area on the surface of the BP to expose carbon fibers by applying polyester fabric. This method not only reduces ICR by exposing carbon fibers to BP surfaces, but also forms a unique ditch pattern that can effectively hold carbon felt electrodes in place. The acidic environmental durability, mechanical properties, and gas permeability of the developed carbon/epoxy composite BP are experimentally verified.

Coating Durability of Metal Bipolar plate for Low Temperature PEMFC (저온 PEMFC용 금속분리판 코팅의 내구 특성 연구)

  • Kang, Sungjin;Jeon, Yootaek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.82.2-82.2
    • /
    • 2010
  • The development of bipolar plate having high efficiency and chemical properties has a major impact on fuel cell applications commercialization. Even though graphite bipolar plate has high electric conductivity and chemical resistance, it has demerits about mass production and brittle property for commercialization. Hence, metallic bipolar plate can be substitute for fuel cell bipolar plate. Although its inadequate corrosion behavior under PEMFC environment lead to a deterioration of membrane by dissolved metal ions, metallic bipolar plate for PEMFC is more suitable for automotive and residential power generation system because of its high mechanical strength, low gas permeability and applicability to mass production. Therefore, several types of coating has been applied to prevent corrosion and oxide film growth and to achieve more high durability. This work presents durability of coated metal bipolar plate for low temperature PEMFC which made for fuel cell vehicle. This results showed surface treatment increase long-term durability, even electric conductivity and corrosion resistance.

  • PDF

Study on the Surface Electric Resistance for Inner COnductive Film in CRT Funnel (브라운관 Funnel Glass 내면의 흑연피막의 표면전기저항에 관한 연구)

  • 김상문;김태옥;신학기
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.11
    • /
    • pp.1155-1161
    • /
    • 1998
  • We have studyed the surface electric resistiance for inner conductive film consisted of graphite and iron oxide by coating the conductive paint on inner face of 28" wide CRT funnel and have evaluated the working properties of 28" wide CRT according to the surface electric resistiance. We found that the viscosity of paint and the thickness of conductive film became the higher but the surface electric resistiance of con-ductive films was the lower than before in accordance with the increase of solid contents in conductive paint and that the surface condition and the surface electric resistiance of conductive films changed highly ac-cording to the drying conditions also. From these results we could get the uniform thickness and the un-iform film resistance and the optimum working property of selectric propertise in CRT when we used the conductive paint with solid contents 28% and viscosity about 13cps.

  • PDF

Simulation of Silicon Carbide Converted Graphite by Chemical Vapor Reaction (Ⅰ) (화학적 기상 반응에 의한 탄화규소 피복 흑연의 시뮬레이션(Ⅰ))

  • Lee, Joon-Sung;Choi, Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.9
    • /
    • pp.846-852
    • /
    • 2001
  • A two-dimensional Monte Carlo simulation has been used to investigate the effect of the reaction temperature on the formation of the silicon carbide conversion layer near the surface of graphite substrate The carbothermal reduction of silica is the reaction mechanism of silicon carbide formation on graphite substrate by chemical vapor reaction methods. The chemical composition of silicon carbide conversion layer gradually changes from carbon to silicon carbide because gaseous reactants diffuse through micropores within graphite substrate and react with carbon at the surface of inner pores. The simulation was carried out under the condition of reaction temperature at 1900K, 2000K, 2100K and 2200K for 500MCS. It was found from the results of simulation that the thickness of silicon carbide conversion layer increases with reaction temperature.

  • PDF

Fracture Behavior of Graphite Material at Elevated Temperatures Considering Oxidation Condition (산화환경을 고려한 흑연 내열재의 고온파단특성)

  • Choi, Hoon Seok;Kim, Jae Hoon;Oh, Kawng Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.11
    • /
    • pp.1091-1097
    • /
    • 2015
  • Graphite material has been widely used for making the rocket nozzle throat because of its excellent thermal properties. However, when compared with typical structural materials, graphite is relatively weak with respect to both strength and toughness, owing to its quasi-brittle behavior, and gets oxidized at $450^{\circ}C$. Therefore, it is important to evaluate the thermal and mechanical properties of this material for using it in structural applications. This study presents an experimental method to investigate the fracture behavior of ATJ graphite at elevated temperatures. In particular, the effects of major parameters such as temperature, loading, and oxidation conditions on strength and fracture characteristics were investigated. Uniaxial compression and tension tests were conducted in accordance with the ASTM standard at room temperature, $500^{\circ}C$, and $1,000^{\circ}C$. Fractography analysis of the fractured specimens was carried out using an SEM.

Preparation of Thin Nickel Foam for Nickel-Metal Hydride Battery (Ni-MH 전지용 thin nickel foam의 제조)

  • 신준호;김기원
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.2
    • /
    • pp.83-91
    • /
    • 1995
  • A new method for preparation of thin nickel foam for Ni-MH battery was investigated. In this method, fine graphite powders of $1\mu\textrm{m}$$2\mu\textrm{m}$ diameter were pasted into pores of thin polyurethane foam film in order to supply electric conducting seeds for nickel deposition by electroless plating reaction. After electroless plating, remaining polyurethane foam was removed chemically by organic solvent treatment and graphite particles also removed by ultrasonic cleaning. Porosity of formed nickel foam was about 85% During electroplating, porosity of the nickel foam decreased less than 5% up to $30\mu\textrm{m}$ coating thickness. And then it was electroplated and heat-treated to improve mechanical strength and ductility. Finally, thin nickel foam for Ni electrode of Ni-MH battery with 80% porosity and $350\mu\textrm{m}$~X$400\mu\textrm{m}$ thickness was obtained.

  • PDF

A Study on the Performance of PEMFC Using the TiN-Coated 316 Stainless Steel Bipolar Plates (TiN이 코팅된 316 스테인리스강 분리판을 이용한 고분자전해질 연료전지의 성능에 관한 연구)

  • Cho, Eun-Ae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.4
    • /
    • pp.291-297
    • /
    • 2003
  • As an alternative bipolar plate material for polymer electrolyte membrane fuel cell (PEMFC), TiN-coated 316 stainless was evaluated in terms of electrical contact resistance and water contact angle. Performance and lifetime of the TiN-coated 316 bipolar plates were measured in comparison with those of graphite and bare 316 bipolar plates. At a cell voltage of 0.6 V, current density of the single cells using graphite, AISI 316, and TiN/316 bipolar plates was 996, 796, and $896mA/cm^2$, respectively. By coating 316 stainless steel with TiN layer, performance degradation rate determined to be the voltage degradation rate at a cell voltage of 0.6 V was reduced from 2.3 to 0.43 mV/h.