• Title/Summary/Keyword: graphene reinforced composites

Search Result 36, Processing Time 0.025 seconds

Geometrical imperfection and thermal effects on nonlinear stability of microbeams made of graphene-reinforced nano-composites

  • Fenjan, Raad M.;Faleh, Nadhim M.;Ahmed, Ridha A.
    • Advances in nano research
    • /
    • v.9 no.3
    • /
    • pp.147-156
    • /
    • 2020
  • This research is related to nonlinear stability analysis of advanced microbeams reinforced by Graphene Platelets (GPLs) considering generic geometrical imperfections and thermal loading effect. Uniform, linear and nonlinear distributions of GPLs in transverse direction have been considered. Imperfection sensitivity of post-bucking behaviors of the microbeam to different kinds of geometric imperfections have been examined. Geometric imperfection is first considered to be identical as the first buckling mode, then a generic function is employed to consider sine-type, local-type and global-type imperfectness. Modified couple stress theory is adopted to incorporate size-dependent behaviors of the beam at micro scale. The post-buckling problem is solved analytically to derive load-amplitude curves. It is shown that post-buckling behavior of microbeam is dependent on the type geometric imperfection and its magnitude. Also, post-buckling load can be enhanced by adding more GPLs or selecting a suitable distribution for GPLs.

Isogeometric analysis of FG polymer nanocomposite plates reinforced with reduced graphene oxide using MCST

  • Farzam, Amir;Hassani, Behrooz
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.1
    • /
    • pp.69-93
    • /
    • 2022
  • Reduced graphene oxide (rGO) is one of the derivatives of graphene, which has drawn some experimental research interests in recent years however, numerical research studying the mechanical behaviors of composites made of rGO has not been taken into consideration yet. The objective of this research is to investigate the buckling, and free vibration of functionally graded reduced graphene oxide reinforced nanocomposite (FG rGORC) plates employing isogeometric analysis (IGA). The effective Young's modulus of rGORC is determined based onthe Halpin-Tsai model. Four different FG distribution types of rGO are considered varying across plate thickness. Besides, the refined plate theory is used based on Reddy's third-order function. To capture the size effect, modified couple stress theory (MCST) is employed. A comprehensive study is provided examining the effect of various parameters including rGO weight fraction, FG distribution types, boundary conditions, material length scale parameter, etc. Our obtained results show that the addition of only 1% of uniformly distributed rGO into epoxy plates leads to the fundamental frequency and critical buckling load 18% and 39% higher than those of pure epoxy plates, respectively.

Fabrication and Mechanical Properties of Carbon Fiber Reinforced Polymer Composites with Functionalized Graphene Nanoplatelets (기능기화 된 그래핀 나노플레이틀릿이 첨가 된 탄소섬유 강화 고분자 복합소재의 제조 및 기계적 특성 연구)

  • Cha, Jaemin;Kim, Jun Hui;Ryu, Ho Jin;Hong, Soon H.
    • Composites Research
    • /
    • v.30 no.5
    • /
    • pp.316-322
    • /
    • 2017
  • Carbon fiber is a material with excellent mechanical, electrical and thermal properties, which is widely used as a composite material made of a polymer matrix. However, this composite material has a weak point of interlaminar delamination due to weak interfacial bond with polymer matrix compared with high strength and elasticity of carbon fiber. In order to solve this problem, it is essential to use reinforcements. Due to excellent mechanical properties, graphene have been expected to have large improvement in physical properties as a reinforcing material. However, the aggregation of graphene and the weak interfacial bonding have resulted in failure to properly implement reinforcement effect. In order to solve this problems, dispersibility will be improved. In this study, functionalization of graphene nanoplatelet was proceeded with melamine and mixed with epoxy polymer matrix. The carbon fiber reinforced polymer composites were fabricated using the prepared graphene nanoplatelet/epoxy and flexural properties and interlaminar shear strength were measured. As a result, it was confirmed that the dispersibility of graphene nanoplatelet was improved and the mechanical properties of the composite material were increased.

Microwave Sintering of Graphene-Nanoplatelet-Reinforced Al2O3-based Composites

  • Ai, Yunlong;Liu, Ying;Zhang, Qiuyu;Gong, Yuxing;He, Wen;Zhang, Jianjun
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.6
    • /
    • pp.556-561
    • /
    • 2018
  • In this study, we performed a microwave sintering (MWS) of $Al_2O_3$ ceramic and $Al_2O_3$-based composites with nominal contents of graphene nanoplatelets (GPLs) of 0.2, 0.4, 0.6, and 0.8 vol%. The GPL dispersion in N-methyl pyrroleketone was optimized to deagglomerate the GPLs without damaging their structure. Dense composites were then obtained by MWS at $1500^{\circ}C$ for 30 min. The effects of different GPL contents on the phase compositions, microstructures, and mechanical properties of the composites were investigated. The microstructures of the composites became finer with the incorporation of the GPLs. The well-dispersed GPL fillers led to higher sintered densities in the composites. The optimal mechanical properties were achieved with 0.4 vol% GPLs. For this sample, the hardness, fracture toughness, and bending strength were $2000kgf/mm^2$, $6.19MPa{\cdot}m^{1/2}$, and 365.10 MPa, respectively. The addition of GPL could improve the microstructure of the $Al_2O_3$ ceramic and has potential to improve the fracture toughness of the ceramics.

Post-buckling analysis of geometrically imperfect nanoparticle reinforced annular sector plates under radial compression

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Mollaee, Saeed;Barati, Mohammad Reza;Afshari, Behzad Mohasel;Hamouda, A.M.S.
    • Computers and Concrete
    • /
    • v.26 no.1
    • /
    • pp.21-30
    • /
    • 2020
  • Buckling and post-buckling behaviors of geometrically imperfect annular sector plates made from nanoparticle reinforced composites have been investigated. Two types of nanoparticles are considered including graphene oxide powders (GOPs) and silicone oxide (SiO2). Nanoparticles are considered to have uniform and functionally graded distributions within the matrix and the material properties are derived using Halpin-Tsai procedure. Annular sector plate is formulated based upon thin shell theory considering geometric nonlinearity and imperfectness. After solving the governing equations via Galerkin's technique, it is showed that the post-buckling curves of annular sector plates rely on the geometric imperfection, nanoparticle type, amount of nanoparticles, sector inner/outer radius and sector open angle.

Nano-graphene oxide damping behavior in polycarbonate coated on GFRP

  • Mohammad, Afzali;Yasser, Rostamiyan;Pooya, Esmaeili
    • Structural Engineering and Mechanics
    • /
    • v.84 no.6
    • /
    • pp.823-829
    • /
    • 2022
  • This study considered the experimental parameters (Nano-graphene oxide reinforced polycarbonate, GFRP) under low-velocity impact load and vibration analysis. The effect of nano-graphene oxide (NGO) on a polycarbonate-based composite was studied. Two test procedures were adopted to obtain experimental results, vibration analysis. The mechanical tests were performed on damaged and non-damaged specimens to determine the damaging effect on the composite specimens. After the test was carried out, the effect of NGO was measured and damping factors were ascertained experimentally. 0. 2 wt% NGO was determined as the optimum amount that best affected the Vibration Analysis. The experiments revealed that the composite's damping properties were increased by adding the nanoparticles to 0.25 wt% and decreased slightly for the specimens with the highest nanoparticles content. Cyclic sinus loading was applied at a frequency of 3.5 Hz. This paper study the frequency effect of 3.5khz frequency damage on mechanical results. Found that high frequency will worthlessly affect the fatigue life in NGO/polycarbonate composite. In 3.5 Hz frequency, it was chosen to decrease the heat by frequency. Transmission electron microscopy (TEM) micrographs were used to investigate the distribution of NGO on the polycarbonate matrix and revealed a homogeneous mixture of nano-composites and strong bonding between NGO and the polycarbonate which increased the damping properties and decreased vibration. Finally, experimental modal analysis was conducted after the high-velocity impact damage process to investigate the defect on the NGO polycarbonate composites.

Fabrication of Micro-electrodes using Liner Block Moving Electrical Discharge Grinding and Characteristics of Micro-hole Machining of Graphene Nanoplatelet-reinforced Al2O3Composites (블록직선이송 방전연삭에 의한 미세전극 가공 및 그래핀 강화 알루미나 복합소재의 마이크로 홀 가공특성)

  • Jeong, Hyeon-A;Lee, Chang Hoon;Kang, Myung Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.149-156
    • /
    • 2017
  • Graphene nanoplatelet (GNP)-reinforced alumina ($Al_2O_3$) is a promising material for micro-partapplications, particularly micro-nozzle shapes, because of its excellent wearresistance. In this study, a $Al_2O_3$/GNPcomposite with 15 vol% graphene nanoplatelets (GNP) was highly densified and fabricated via spark plasma sintering for micro-electrical discharge drilling (Micro-ED drilling) and the wear resistance property of the composite is evaluated via the ball-on-disk method. In addition, the diameter and shape of the micro-electrodes machined by wire electrical discharge grinding (WEDG), block electrical discharge grinding (BEDG), and new linear block moving electrical discharge grinding (LBMEDG) methods are systematically compared and analyzed to observe the micro-hole machining in the micro-ED drilling of the $Al_2O_3$/15vol% GNP composite.

Stability/instability of the graphene reinforced nano-sized shell employing modified couple stress model

  • Yao, Zhigang;Xie, Hui;Wang, Yulei
    • Wind and Structures
    • /
    • v.32 no.1
    • /
    • pp.31-46
    • /
    • 2021
  • The current research deals with, stability/instability and cylindrical composite nano-scaled shell's resonance frequency filled by graphene nanoplatelets (GPLs) under various thermal conditions (linear and nonlinear thermal loadings). The piece-wise GPL-reinforced composites' material properties change through the orientation of cylindrical nano-sized shell's thickness as the temperature changes. Moreover, in order to model all layers' efficient material properties, nanomechanical model of Halpin-Tsai has been applied. A functionally modified couple stress model (FMCS) has been employed to simulate GPLRC nano-sized shell's size dependency. It is firstly investigated that reaching the relative frequency's percentage to 30% would lead to thermal buckling. The current study's originality is in considering the multifarious influences of GPLRC and thermal loading along with FMCS on GPLRC nano-scaled shell's resonance frequencies, relative frequency, dynamic deflection, and thermal buckling. Furthermore, Hamilton's principle is applied to achieve boundary conditions (BCs) and governing motion equations, while the mentioned equations are solved using an analytical approach. The outcomes reveal that a range of distributions in temperature and other mechanical and configurational characteristics have an essential contribution in GPLRC cylindrical nano-scaled shell's relative frequency change, resonance frequency, stability/instability, and dynamic deflection. The current study's outcomes are practical assumptions for materials science designing, nano-mechanical, and micromechanical systems such as micro-sized sensors and actuators.

Vibration analysis of graphene platelet reinforced stadium architectural roof shells subjected to large deflection

  • Abeer Qasim Jbur;Wael Najm Abdullah;Nadhim M. Faleh;Zahraa N. Faleh
    • Structural Engineering and Mechanics
    • /
    • v.86 no.2
    • /
    • pp.157-165
    • /
    • 2023
  • In the present work, the vibration characteristics of sandwich nanocomposite shells, fortified with graphene platelets (GPLs) have been researched. The shell has been considered as the stadium roof shape with double curvatures under vibration due to earthquake. The nanocomposite has the matrix of concrete which is fortified with uniform or linear dispersions of GPLs. Also, the core possesses cellular type square architecture for which the effective elastic modulus has been defined in the context of relative density based relations. Based upon the classic shell strains containing two identical curvatures, the governing equations have been established and solved through differential quadrature approach. It will be seen that the vibrational frequencies rely on the core relative density, height of layers, the amount and dispersions of GPLs and even shell geometric parameters.

Free vibration analysis of a laminated trapezoidal plate with GrF-PMC core and wavy CNT-reinforced face sheets

  • Yingqun Zhang;Qian Zhao;Qi Han;N. Bohlooli
    • Steel and Composite Structures
    • /
    • v.48 no.3
    • /
    • pp.275-291
    • /
    • 2023
  • This paper has focused on presenting vibration analysis of trapezoidal sandwich plates with 3D-graphene foam reinforced polymer matrix composites (GrF-PMC) core and FG wavy CNT-reinforced face sheets. The porous graphene foam possessing 3D scaffold structures has been introduced into polymers for enhancing the overall stiffness of the composite structure. Also, 3D graphene foams can distribute uniformly or non-uniformly in the plate thickness direction. The effective Young's modulus, mass density and Poisson's ratio are predicted by the rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive reduction of the tubes' effective aspect ratio as the filler content increases. The First-order shear deformation theory of plate is utilized to establish governing partial differential equations and boundary conditions for trapezoidal plate. The governing equations together with related boundary conditions are discretized using a mapping-generalized differential quadrature (GDQ) method in spatial domain. Then natural frequencies of the trapezoidal sandwich plates are obtained using GDQ method. Validity of the current study is evaluated by comparing its numerical results with those available in the literature. It is explicated that 3D-GrF skeleton type and weight fraction, carbon nanotubes (CNTs) waviness and CNT aspect ratio can significantly affect the vibrational behavior of the sandwich structure. The plate's normalized natural frequency decreased and the straight carbon nanotube (w=0) reached the highest frequency by increasing the values of the waviness index (w).