Browse > Article
http://dx.doi.org/10.4191/kcers.2018.55.6.02

Microwave Sintering of Graphene-Nanoplatelet-Reinforced Al2O3-based Composites  

Ai, Yunlong (School of Material Science and Engineering, Nanchang Hangkong University)
Liu, Ying (School of Material Science and Engineering, Nanchang Hangkong University)
Zhang, Qiuyu (School of Material Science and Engineering, Nanchang Hangkong University)
Gong, Yuxing (School of Material Science and Engineering, Nanchang Hangkong University)
He, Wen (School of Material Science and Engineering, Nanchang Hangkong University)
Zhang, Jianjun (School of Material Science and Engineering, Nanchang Hangkong University)
Publication Information
Abstract
In this study, we performed a microwave sintering (MWS) of $Al_2O_3$ ceramic and $Al_2O_3$-based composites with nominal contents of graphene nanoplatelets (GPLs) of 0.2, 0.4, 0.6, and 0.8 vol%. The GPL dispersion in N-methyl pyrroleketone was optimized to deagglomerate the GPLs without damaging their structure. Dense composites were then obtained by MWS at $1500^{\circ}C$ for 30 min. The effects of different GPL contents on the phase compositions, microstructures, and mechanical properties of the composites were investigated. The microstructures of the composites became finer with the incorporation of the GPLs. The well-dispersed GPL fillers led to higher sintered densities in the composites. The optimal mechanical properties were achieved with 0.4 vol% GPLs. For this sample, the hardness, fracture toughness, and bending strength were $2000kgf/mm^2$, $6.19MPa{\cdot}m^{1/2}$, and 365.10 MPa, respectively. The addition of GPL could improve the microstructure of the $Al_2O_3$ ceramic and has potential to improve the fracture toughness of the ceramics.
Keywords
Microwave sintering; $Al_2O_3$-based composite; Graphene nanoplatelet; Microstructure; Mechanical properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 I. Ahmad, H. Z. Cao, H. H. Chen, H. Zhao, A. Kennedy, and Y. Q. Zhu, "Carbon Toughened Aluminium Oxide Nanocomposite," J. Eur. Ceram. Soc., 30 [4] 865-73 (2010).   DOI
2 J. W. Zheng, D. M. Gao, L. Qiao, Y. Ying, W. C. Li, L. Q. Jiang, and S. L. Che, "Influence of the $Cu_2O$ Morphology on the Metallization of $Al_2O_3$ Ceramics," Surf. Coat. Technol., 285 249-54 (2016).   DOI
3 A. K. Swarnakar, S. G. Huang, O. V. Biest, and J. Vleugels, "Ultrafine $Al_2O_3$-B4C Composites Consolidated by Pulsed Electric Current Sintering," J. Alloys Compd., 499 [2] 200-5 (2010).   DOI
4 Z. P. Xie, W. J. Xue, and H. B. Chen, "Research of Mechanical and Thermal Properties of $Al_2O_3$ at Cryogenic Temperatures," Rare. Met. Mater. Eng., 40 [S1] 597−99 (2011).
5 V. Puchy, P Hvizdos, J. Dusza, F. kovac, F. Inam, and M. J. Reece, "Wear Resistance of $Al_2O_3$-CNT Ceramic Nanocomposites at Room and High Temperatures," Ceram. Int., 39 [5] 5821-26 (2013).   DOI
6 I. Ahmad, M. Islam, M. A. Dar, F. Xu, and S. I. Shad, "Magnesia Tuned Multi-Walled Carbon Nanotubes-Reinforced Alumina Nanocomposites," Mater. Charact., 99 210-19 (2015).   DOI
7 R. S. Guo, D. L. Guo, D. Zhao, Z. F. Yang, and Y. R. Chen, "Low Temperature Aging in Water Vapor and Mechanical Properties of ZTA Ceramics," Mater. Lett., 56 [6] 1014-18 (2002).   DOI
8 Y. L. Li, H. E. Kim, and Y. H. Koh, "Improving the Surface Hardness of Zirconia Toughened Alumina (ZTA) Composites by Surface Treatment with a Boehmite," Ceram. Int., 38 [4] 2889-92 (2012).   DOI
9 M. Parchoviansky, D. Galusek, J. Sedlacek, P. Svancarek, M. Kasiarova, J. Dusza, and P. Sajgalik, "Microstructure and Mechanical Properties of Hot Pressed $Al_2O_3$/SiC Nanocomposites," J. Eur. Ceram. Soc., 33 [12] 2291-98 (2013).   DOI
10 J. Liu, H.X. Yan, M.J. Reece, and K. Jiang, "Toughening of Zirconia/Alumina Composites by the Addition of Graphene Platelets," J. Eur. Ceram. Soc., 32 [16] 4185-93 (2012).   DOI
11 L. K. vetkova, A. Duszova, P. Hvizdos, J. Dusza, P. Kun, and C. Balazsi, "Fracture Toughness and Toughening Mechanisms in Graphene Platelet Reinforced $Si_3N_4$ Composites," Scr. Mater., 66 [10] 793-96 (2012).   DOI
12 D. X. Li, Z. H. Yang, D. C. Jia, X. M. Duan, P. G. He, J. Yu, and Y. Zhou, "Spark Plasma Sintering and Toughening of Graphene Platelets Reinforced SiBCN Nanocomposites," Ceram. Int. 41 [9] 10755-65 (2015).   DOI
13 H. Y. Yang, X. G. Zhou, J. S. Yu, H. L. Wang, and Z. L. Huang, "Microwave and Conventional Sintering of SiC/SiC Composites: Flexural Properties and Microstructures," Ceram. Int., 41 11651-54 (2015).   DOI
14 Y. Celik, A. Celik, E. Flahaut, and E. Suvaci, "Anisotropic Mechanical and Functional Properties of Graphene-Based Alumina Matrix Nanocomposites," J. Eur. Ceram. Soc., 36 [8] 2075-86 (2016).   DOI
15 J. Q. Bi, "A Method of Preparation of Alumina Ceramics Reinforced by Graphene Nanosheets"; China Patent 201310018280.4, 4-14, 2013.
16 Z. B. Yin, J. T. Yuan, Z. H. Wang, H. P. Hu, Y. Cheng, and X. Q. Hu, "Preparation and Properties of an $Al_2O_3$/Ti(C,N) Micro-Nano-Composite Ceramic Tool Material by Microwave Sintering," Ceram. Int., 42 [3] 4099-106 (2016).   DOI
17 S. Manivannan, A. Joseph, P. K. Sharma, K. C. J. Raju, and D. Das, "Effect of Microwave and Conventional Sintering on Densification, Microstructure and Dielectric Properties of $BZT_{-x}Cr_2O_3$ Ceramics," Ceram. Int., 41 [9] 10923-33 (2015).   DOI
18 M. O. ghbazi and O. Mirzaee, "Microwave Versus Conventional Sintering: A Review of Fundamentals, Advantages and Applications," J. Alloys Compd., 494 [1-2] 175-89 (2010).   DOI
19 A. Presenda, M. D. Salvador, L. Felipe, P. Foix, R. Moreno, and A. Borrell, "Effect of Microwave Sintering on Microstructure and Mechanical Properties in Y-TZP Materials Used for Dental Applications," Ceram. Int., 41 [5] 7125-32 (2015).   DOI
20 F. Zuo, A. Badev, S. Saunier, D. Goeuriot, R. Heuguet, and S. Marinel, "Microwave Versus Conventional Sintering: Estimate of the Apparent Activation Energy for Densification of ${\alpha}$-Alumina and Zinc Oxide," J. Eur. Ceram. Soc., 34 [12] 3103-10 (2014).   DOI
21 B. Yazdani and I. Ahmad, "Graphene and Carbon Nanotube (CNT)-Reinforced Alumina Nanocomposites," J. Eur. Ceram. Soc., 35 [1] 179-86 (2015).   DOI
22 M. Khenfouch, U. Buttner, and M. Baitoul, "Systhesis and Characterization of Mass Produced High Quality Few Layered Graphene Sheets via a Chemical Method," Graphene, 3 7-13 (2014).   DOI
23 X. Y. Yang, Performance and Mechanism study of ZnO Graphene Hybid Material (in Chinese), pp. 19−40, in M. S. Thesis, University of Science and Technology of China, Hefei, 2014.
24 A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, and F. Miao, "Superior Thermal Conductivity of Single-Layer Graphene," Nano. Lett., 8 [3] 902-7 (2008).   DOI
25 Y. Celik, A. Celik, and E. Flahaut, "Anisotropic Mechanical and Functional Properties of Graphene-Based Alumina Matrix Nanocomposites," J. Eur. Ceram. Soc., 36 2075-83 (2016).   DOI
26 J. Liu, H. X. Yan, and K. Jiang, "Mechanical Properties of Grapheme Platelet-Reinforced Alumina Ceramic Composites," Ceram. Int., 39 [6] 6215-21 (2013).   DOI