• 제목/요약/키워드: graphene aerogel

검색결과 5건 처리시간 0.022초

주석산화물 에어로겔의 Graphene Oxide 첨가에 따른 광촉매적 Rhodamine B 분해 (Effect of Graphene Oxide Addition to Tin Oxide Aerogel for Photocatalytic Rhodamine B Degradation)

  • 김태희;최하령;김영훈;이지훈;박형호
    • 마이크로전자및패키징학회지
    • /
    • 제28권1호
    • /
    • pp.61-66
    • /
    • 2021
  • SnO2는 3.6 eV를 갖는 반도체 물질로 광촉매 특성을 보유하고 있는 물질이다. 광촉매 특성을 극대화하기 위해 3차원 에어로겔 화를 통하여 높은 비표면적을 확보하고자 epoxide-initiated sol-gel method를 기반으로 하여 주석 산화물 에어로겔을 합성하였다. 좀더 향상된 비표면적을 구현하고자 합성공정 중 겔화전에 graphene oxide (GO) flake의 첨가를 통해 정렬된 기공구조와 결과적으로 높은 비표면적을 확보할 수 있었다. 0.5 wt%의 GO flake의 첨가로 에어로겔 복합체의 비표면적을 약 1.7배 향상시키는 결과를 도출하였다. 이렇게 향상된 비표면적을 기반으로 Rhodamine B 염료의 분해효과를 흡수광 intensity 변화를 관찰하여 정성적으로 광촉매 효율을 비교 분석하였다. 가장 높은 비표면적을 갖는 0.5 wt%의 복합체는 120분에 67.3%의 분해 효율을 확보하였다. 또한, GO를 첨가하지 않은 SnO2 에어로겔 보다 약 2배 향상된 reaction rate를 보유하였다.

Hierarchically Structured, Functionalized Graphenes for a Highly Reversible Capacitive Charge Storage

  • Yu, Xu;Park, Ho Seok
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.491.1-491.1
    • /
    • 2014
  • Heteroatom phosphorous-doped graphene aerogel (PGA) with high surface area is successfully synthesized via hydrothermal method for high power and energy supercapacitors, including the advantage of three dimensional internetwork and constitutive graphene skeletons. The morphology of PGA was investigated by the scanning electron microscope, transmission electron microscope. The chemical structure and circumstances were confirmed by Raman and X-ray photoelectron spectroscopy, the phosphorus is successfully incorporated with the graphene sheets. As evidenced by electrochemical measurements, cyclic voltammetry and galvanostatic charge discharge, the hierarchically PGA has an unprecedented high capacitance, which contributes to the excellent high-rate performance of this material for supercapacitor application.

  • PDF

Platinum Decoration of a 3D Oxidized Graphitic Carbon Nitride/Graphene Aerogel for Enhanced Visible-Light Photocatalytic Hydrogen Evolution

  • Thi Kieu Oanh Nguyen;Thanh Truong Dang;Tahereh Mahvelati-Shamsabadi;Jin Suk Chung
    • Korean Chemical Engineering Research
    • /
    • 제61권4호
    • /
    • pp.627-634
    • /
    • 2023
  • Graphitic carbon nitride (g-C3N4) has attracted considerable attention since its discovery for its catalysis of water splitting to hydrogen and oxygen under visible light irradiation. However, pristine g-C3N4 confers only low photocatalytic efficiency and requires surface cocatalysts to reach moderate activity due to a lack of accessible surface active sites. Inspired by the high specific surface area and superior electron transfer of graphene, we developed a strongly coupled binary structure of graphene and g-C3N4 aerogel with 3D porous skeleton. The as-prepared 3D structure photocatalysts achieve a high surface area that favors efficient photogenerated charge separation and transfer, enhances the light-harvesting efficiency, and significantly improves the photocatalytic hydrogen evolution rate as well. The photocatalyst performance is observed to be optimized at the ratio 3:7 (g-C3N4:GO), leading to photocatalytic H2 evolution of 16125.1 mmol. g-1. h-1 under visible light irradiation, more than 161 times higher than the rate achieved by bulk g-C3N4.

A review: synthesis and applications of graphene/chitosan nanocomposites

  • Yuan, Hui;Meng, Long-Yue;Park, Soo-Jin
    • Carbon letters
    • /
    • 제17권1호
    • /
    • pp.11-17
    • /
    • 2016
  • Recently, with continuous developments in the field of materials science, graphene oxide (GO) has emerged as a promising material with excellent electrical, thermal, mechanical, and optical properties, which play important roles in most fields. Researchers have achieved considerable progress with graphene. Chitosan (CS) is a natural polymer that has been studied intensively owing to its specific formation, high chemical resistance, and excellent physical properties. These outstanding properties have led to its universal use in applications such as textile fabrics, tissue engineering, medicine and health, coatings, and paints. By combining the advantages of GO and CS, different types of promising materials can be obtained. This review discusses the preparation of GO-CS fibers, hydrogel and aerogel, and the applications of GO-CS nanocomposites. In addition, directions for future research on graphene material composites are discussed.

Three-dimensional Graphene Aerogels for Electrochemical Energy Storage

  • Yun, Sol;Park, Ho Seok
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.485.1-485.1
    • /
    • 2014
  • In this research, we report the synthesis of three-dimensional (3D) hierarchical porous graphene aerogels (hpGAs) for application to electrochemical energy storage. For electrochemical systems, the specific capacitance is a key parameter to evaluate the characteristics of electrode materials. By taking full advantage of large surface area, 3D hpGAs would achieve the larger specific capacitance over rGO film and GAs. Microscopic structures and topologies of hpGAs were investigated using field emission scanning electron microscopy and transmission electron microscopy. X-ray photoelectron spectroscopy was used to determine the chemical compositions of rGO film, GAs, and hpGAs. Raman spectra were recorded from 100 to 2500 cm-1 at room temperature using a Raman spectroscopy equipped with a ${\times}100$ objective was used. The specific area and pore distribution of GAs and hpGAs were obtained using a Brunauer-Emmett-Teller apparatus.

  • PDF