Recently, distributed collaborative development environment has been recognized an alternative environment for product development in which multidisciplinary participants are naturally involving. Reuse of Product design information has long been recognized as one of core requirements for efficient product development. This paper addresses an image-based retrieval system to support product design information reuse. In the system, product images obtained from multi-modal devices are utilized to reuse design information. The proposed system conducts the segmentation of a product image by using a labeling method and generates an attributed relational graph (ARG) that represents properties of segmented regions and their relationships. The generated ARG is extended by integrating corresponding part/assembly information. In this manner, the reuse of assembly design information using a product image has been realized. The main advantages of the presented system are following. First, the system is not dependent to specific design tools, because it utilizes multimedia images that can be obtained easily from peripheral devices. Second ratio-based features extracted from images enable image retrievals that contain various sizes of parts. Third, the system has shown outstanding search performance, because we applied various information of segmented part regions and their relationships between parts.
In this paper, a rate-distortion based image segmentation algorithm is presented using a recursive merging with region adjacency graph (RAG). In the method, the dissimilarity between a pair of adjacent regions is represented as a Lagrangian cost function considered in rate-distortion sense. Lagrangian multiplier is estimated in each merging step, a pair of adjacent regions whose cost is minimal is searched and then the pair of regions are merged into a new region. The merging step is recursively performed until some termination criterion is reached. The proposed method thus is suitable for region-based coding or segmented-based coding. Experiment results for 256x256 Lena show that segmented-based coding using the proposed method yields PSNR improvement of about 2.5 - 3.5 dB. 0.8 -1.0 dB. 0.3 -0.6 dB over mean-difference-based method. distortion-based method, and JPEG, respectively.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.10
no.4
/
pp.1712-1731
/
2016
In this paper, we propose a novel saliency detection framework via multiple random walks (MRW) which simulate multiple agents on a graph simultaneously. In the MRW system, two agents, which represent the seeds of background and foreground, traverse the graph according to a transition matrix, and interact with each other to achieve a state of equilibrium. The proposed algorithm is divided into three steps. First, an initial segmentation is performed to partition an input image into homogeneous regions (i.e., superpixels) for saliency computation. Based on the regions of image, we construct a graph that the nodes correspond to the superpixels in the image, and the edges between neighboring nodes represent the similarities of the corresponding superpixels. Second, to generate the seeds of background, we first filter out one of the four boundaries that most unlikely belong to the background. The superpixels on each of the three remaining sides of the image will be labeled as the seeds of background. To generate the seeds of foreground, we utilize the center prior that foreground objects tend to appear near the image center. In last step, the seeds of foreground and background are treated as two different agents in multiple random walkers to complete the process of salient object detection. Experimental results on three benchmark databases demonstrate the proposed method performs well when it against the state-of-the-art methods in terms of accuracy and robustness.
Journal of the Korean Institute of Telematics and Electronics
/
v.25
no.12
/
pp.1677-1685
/
1988
In this paper, a new contour coding algorithm is investigated for use in region based image coding. Generally the contour data may be encoded by its chain codes or chain difference codes. But the data compression efficiency is low because of heavy burden for initial absolute coordinates of each chain. To alleviate this problem, the depth first search in graph traversal algorithm, is applied to the chain difference coding method. The proposed coding scheme is shown to be very efficient for contour images obtained by split-merge segmentation. Finally, we can reuce data about 60% in comparison with modified chain difference coding.
Journal of Advanced Information Technology and Convergence
/
v.9
no.1
/
pp.89-102
/
2019
Collagen can be used in building artificial skin replacements for treatment of burns and towards the reconstruction of bone as well as researching cell behavior and cellular interaction. The strength of collagen in connective tissue rests on the characteristics of collagen fibers. 3D confocal imaging of collagen fibers enables the characterization of their spatial distribution as related to their function. However, the image stacks acquired with confocal laser-scanning microscope does not clearly show the collagen architecture in 3D. Therefore, we developed a new method to reconstruct, visualize and characterize collagen fibers from fluorescence confocal images. First, we exploit the tensor voting framework to extract sparse reliable information about collagen structure in a 3D image and therefore denoise and filter the acquired image stack. We then propose to segment the collagen fibers by defining an energy term based on the Hessian matrix. This energy term is minimized by a min cut-max flow algorithm that allows adaptive regularization. We demonstrate the efficacy of our methods by visualizing reconstructed collagen from specific 3D image stack.
Journal of the Korea Institute of Information and Communication Engineering
/
v.23
no.12
/
pp.1520-1527
/
2019
Superpixel methods are widely used in the preprocessing stage as a method to reduce computational complexity by simplifying images while maintaining the characteristics of images in the field of computer vision. It is common to generate superpixels with a regular size and form based on the pixel values rather than considering the characteristics of the image. In this paper, we propose a method to generate superpixels considering the characteristics of an image according to the application. The proposed method consists of two steps, and the first step is to oversegment an image so that the boundary information of the image is well preserved. In the second step, superpixels are merged based on similarity to produce the desired number of superpixels, where the form of superpixels are controlled by limiting the maximum size of superpixels. Experimental results show that the proposed method preserves the boundaries of an image more accurately than the existing method.
This study proposed an unsupervised image classification through the dendrogram of agglomerative clustering as a higher stage of image segmentation in image processing. The proposed algorithm is a hierarchical clustering which includes searching a set of MCSNP (Mutual Closest Spectral Neighbor Pairs) based on the data structures of RAG(Regional Adjacency Graph) defined on spectral space and Min-Heap. It also employes a multi-window system in spectral space to define the spectral adjacency. RAG is updated for the change due to merging using RNV (Regional Neighbor Vector). The proposed algorithm provides a dendrogram which is a graphical representation of data. The hierarchical relationship in clustering can be easily interpreted in the dendrogram. In this study, the proposed algorithm has been extensively evaluated using simulated images and applied to very large QuickBird imagery acquired over an area of Korean Peninsula. The results have shown it potentiality for the application of remotely-sensed imagery.
Proceedings of the Korean Information Science Society Conference
/
2008.06c
/
pp.522-526
/
2008
모션 캡쳐 장비는 사람의 자연스러운 행동이나 동작 정보를 정밀하게 얻기 위해 널리 사용되며, 영화나 게임과 같은 콘텐츠에서 자주 활용되고 있다. 하지만 모션 캡쳐 장비가 고가이기 때문에 한번 입력받은 데이터를 모션별로 분할하고 상황에 맞게 재결합하여 사용할 필요가 있으며, 입력 데이터를 모션별로 분할하는 것은 대부분 수동으로 이루어진다. 이 때문에 캡쳐된 데이터를 자동으로 분할하기 위한 연구들이 다양하게 시도되고 있다. 기존의 연구들은 크게 전역적 특성에 대한 고려없이 이웃하는 프레임만을 고려하는 온라인 방식과 데이터를 전역적으로 고려하나 이웃하는 프레임 사이의 관계를 고려하지 않는 오프라인 방식으로 나누어진다. 본 논문에서는 온라인과 오프라인 방식을 병합한 그래프 기반의 모션 분할 방법을 제안한다. 분할을 위해 먼저 모션데이터를 기반으로 그래프를 생성하며, 그래프는 이웃하는 각 프레임사이의 유사도뿐만 아니라 시간축을 기반으로 일정시간내의 프레임들의 유사도를 모두 고려하였다. 이렇게 생성된 그래프를 분할하기 위해 분할된 모션내의 유사도 합을 최소화하고 각 모션간의 유사도는 최대화할 수 있는 normalized cuts을 이용하였다. 실험에서 제안된 방법은 기존의 오프라인 방식 중 하나인 GMM과 온라인 방식 중 하나인 국부최소값 분할 방법보다 좋은 결과를 보였으며, 이는 각 프레임 사이의 유사도뿐만 아니라 일정시간내의 유사도를 전역적으로 고려하기 때문이다.
A musical sheet is read by optical music recognition (OMR) systems that automatically recognize and reconstruct the read data to convert them into a machine-readable format such as XML so that the music can be played. This process, however, is very challenging due to the large variety of musical styles, symbol notation, and other distortions. In this paper, we present a model for the recognition of musical symbols through the use of a mobile application, whereby a camera is used to capture the input image; therefore, additional difficulties arise due to variations of the illumination and distortions. For our proposed model, we first generate a line adjacency graph (LAG) to remove the staff lines and to perform primitive detection. After symbol segmentation using the primitive information, we use a covariance-matching method to estimate the similarity between every symbol and pre-defined templates. This method generates the three hypotheses with the highest scores for likelihood measurement. We also add a global consistency (time measurements) to verify the three hypotheses in accordance with the structure of the musical sheets; one of the three hypotheses is chosen through a final decision. The results of the experiment show that our proposed method leads to promising results.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.49
no.3
/
pp.10-17
/
2012
In general, image-based 3D scenes can now be found in many popular vision systems, computer games and virtual reality tours. In this paper, we propose a method for creating 3D virtual scenes based on 2D image that is completely automatic and requires only a single scene as input data. The proposed method is similar to the creation of a pop-up illustration in a children's book. In particular, to estimate geometric structure information for 3D scene from a single outdoor image, we apply the tensor voting to an image segmentation. The tensor voting is used based on the fact that homogeneous region in an image is usually close together on a smooth region and therefore the tokens corresponding to centers of these regions have high saliency values. And then, our algorithm labels regions of the input image into coarse categories: "ground", "sky", and "vertical". These labels are then used to "cut and fold" the image into a pop-up model using a set of simple assumptions. The experimental results show that our method successfully segments coarse regions in many complex natural scene images and can create a 3D pop-up model to infer the structure information based on the segmented region information.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.