• Title/Summary/Keyword: graph structure

Search Result 507, Processing Time 0.021 seconds

Effect Analysis of an Additional Edge on Centrality and Ranking of Graph Using Computational Experiments (실험계산을 통한 에지 한 개 추가에 따른 그래프의 중심성 및 순위 변화 분석)

  • Han, Chi-Geun;Lee, Sang-Hoon
    • Journal of Internet Computing and Services
    • /
    • v.16 no.5
    • /
    • pp.39-47
    • /
    • 2015
  • The centrality is calculated to describe the importance of a node in a graph and ranking is given according to the centrality for each node. There are many centrality measures and we use degree centrality, closeness centrality, eigenvector centrality, and betweenness centrality. In this paper, we analyze the effect of an additional edge of a graph on centrality and ranking through experimental computations. It is found that the effect of an additional edge on centrality and ranking of the nodes in the graph is different according to the graph structure using PCA. The results can be used for define the graph characteristics.

An efficient seismic analysis of regular skeletal structures via graph product rules and canonical forms

  • Kaveh, A.;Zakian, P.
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.25-51
    • /
    • 2016
  • In this study, graph product rules are applied to the dynamic analysis of regular skeletal structures. Graph product rules have recently been utilized in structural mechanics as a powerful tool for eigensolution of symmetric and regular skeletal structures. A structure is called regular if its model is a graph product. In the first part of this paper, the formulation of time history dynamic analysis of regular structures under seismic excitation is derived using graph product rules. This formulation can generally be utilized for efficient linear elastic dynamic analysis using vibration modes. The second part comprises of random vibration analysis of regular skeletal structures via canonical forms and closed-form eigensolution of matrices containing special patterns for symmetric structures. In this part, the formulations are developed for dynamic analysis of structures subjected to random seismic excitation in frequency domain. In all the proposed methods, eigensolution of the problems is achieved with less computational effort due to incorporating graph product rules and canonical forms for symmetric and cyclically symmetric structures.

A Study on Update of Road Network Using Graph Data Structure (그래프 구조를 이용한 도로 네트워크 갱신 방안)

  • Kang, Woo-bin;Park, Soo-hong;Lee, Won-gi
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.1
    • /
    • pp.193-202
    • /
    • 2021
  • The update of a high-precision map was carried out by modifying the geometric information using ortho-images or point-cloud data as the source data and then reconstructing the relationship between the spatial objects. These series of processes take considerable time to process the geometric information, making it difficult to apply real-time route planning to a vehicle quickly. Therefore, this study proposed a method to update the road network for route planning using a graph data structure and storage type of graph data structure considering the characteristics of the road network. The proposed method was also reviewed to assess the feasibility of real-time route information transmission by applying it to actual road data.

A new stability and sensitivity design and diagnosis approach

  • Sari, Ali;Korkmaz, Kasim A.
    • Steel and Composite Structures
    • /
    • v.23 no.6
    • /
    • pp.683-690
    • /
    • 2017
  • In the stability and sensitivity design and diagnosis approaches, there are various methodologies available. Bond graph modeling by lumping technique is one of the universal methodologies in methodical analysis used by many researchers in all over the world. The accuracy of the method is validated in different arenas. Bond graphs are a concise, pictorial representation of the energy storage, dissipation and exchange mechanisms of interacting dynamic systems, subsystems and components. This paper proposes a bond graph modeling for distributed parameter systems using lumping techniques. Therefore, a steel frame structure was modeled to analyze employing bond graph modeling of distributed system using lumping technique. In the analytical part, the effectiveness of bond graphs to model this system is demonstrated. The dynamic responses of the system were computed and compared with those computed from the finite element analysis. The calculated maximum deflection time histories were found to be comparable. The sensitivity and the stability of the steel frame structure was also studied in different aspects. Thus, the proposed methodology, with its simplicity, can be used for stability and sensitivity analyses as alternative to finite element method for steel structures. The major value brought in the practical design is the simplicity of the proposed method for steel structures.

A Method for Non-redundant Keyword Search over Graph Data (그래프 데이터에 대한 비-중복적 키워드 검색 방법)

  • Park, Chang-Sup
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.6
    • /
    • pp.205-214
    • /
    • 2016
  • As a large amount of graph-structured data is widely used in various applications such as social networks, semantic web, and bio-informatics, keyword-based search over graph data has been getting a lot of attention. In this paper, we propose an efficient method for keyword search over graph data to find a set of top-k answers that are relevant as well as non-redundant in structure. We define a non-redundant answer structure for a keyword query and a relevance measure for the answer. We suggest a new indexing scheme on the relevant paths between nodes and keyword terms in the graph, and also propose a query processing algorithm to find top-k non-redundant answers efficiently by exploiting the pre-calculated indexes. We present effectiveness and efficiency of the proposed approach compared to the previous method by conducting an experiment using a real dataset.

The Pseudo-Covariational Reasoning Thought Processes in Constructing Graph Function of Reversible Event Dynamics Based on Assimilation and Accommodation Frameworks

  • Subanji, Rajiden;Supratman, Ahman Maedi
    • Research in Mathematical Education
    • /
    • v.19 no.1
    • /
    • pp.61-79
    • /
    • 2015
  • This study discussed about how pseudo-thinking process actually occurs in the mind of the students, used Piaget's frame work of the assimilation and accommodation process. The data collection is conducted using Think-Out-Loud (TOL) method. The study reveals that pseudo thinking process of covariational reasoning occurs originally from incomplete assimilation, incomplete accommodation process or both. Based on this, three models of incomplete thinking structure constructions are established: (1) Deviated thinking structure, (2) Incomplete thinking structure on assimilation process, and (3) Incomplete thinking structure on accommodation process.

Development of a Basic Structure Design System for Machine Tools by Modular Construction Method (모듈러 구성법을 이용한 공작기계의 기본 구조설계 시스템 개발)

  • 임동휘;김석일
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.2
    • /
    • pp.136-143
    • /
    • 2000
  • The appearance of new machine tools with higher flexibility is in need of a basic structure design system for establishing the systematic and rationalized design and manufacturing procedures. In this study. the basic structure design system for machine tools is realized based on the modular construction method. Machine tools are represented as a whole and modular complex with the directed graph, and all possible structural configurations and codes of machine tools for satisfying the machining requirement are derived from the DNA data and connecting patterns of basic structural elements. Especially the structural configurations of machine tools are visualized by the solid modeling techniques and 3-D graphics techniques.

  • PDF

Synthesis of the Fault-Causality Graph Model for Fault Diagnosis in Chemical Processes Based On Role-Behavior Modeling (역할-거동 모델링에 기반한 화학공정 이상 진단을 위한 이상-인과 그래프 모델의 합성)

  • 이동언;어수영;윤인섭
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.5
    • /
    • pp.450-457
    • /
    • 2004
  • In this research, the automatic synthesis of knowledge models is proposed. which are the basis of the methods using qualitative models adapted widely in fault diagnosis and hazard evaluation of chemical processes. To provide an easy and fast way to construct accurate causal model of the target process, the Role-Behavior modeling method is developed to represent the knowledge of modularized process units. In this modeling method, Fault-Behavior model and Structure-Role model present the relationship of the internal behaviors and faults in the process units and the relationship between process units respectively. Through the multiple modeling techniques, the knowledge is separated into what is independent of process and dependent on process to provide the extensibility and portability in model building, and possibility in the automatic synthesis. By taking advantage of the Role-Behavior Model, an algorithm is proposed to synthesize the plant-wide causal model, Fault-Causality Graph (FCG) from specific Fault-Behavior models of the each unit process, which are derived from generic Fault-Behavior models and Structure-Role model. To validate the proposed modeling method and algorithm, a system for building FCG model is developed on G2, an expert system development tool. Case study such as CSTR with recycle using the developed system showed that the proposed method and algorithm were remarkably effective in synthesizing the causal knowledge models for diagnosis of chemical processes.

An Attack Graph Model for Dynamic Network Environment (동적 네트워크 환경에 적용 가능한 Attack Graph 모델 연구)

  • Moon, Joo Yeon;Kim, Taekyu;Kim, Insung;Kim, Huy Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.2
    • /
    • pp.485-500
    • /
    • 2018
  • As the size of the system and network environment grows and the network structure and the system configuration change frequently, network administrators have difficulty managing the status manually and identifying real-time changes. In this paper, we suggest a system that scans dynamic network information in real time, scores vulnerability of network devices, generates all potential attack paths, and visualizes them using attack graph. We implemented the proposed algorithm based attack graph; and we demonstrated that it can be applicable in MTD concept based defense system by simulating on dynamic virtual network environment with SDN.