• Title/Summary/Keyword: graph mining

Search Result 105, Processing Time 0.023 seconds

Analysis of the influence of food-related social issues on corporate management performance using a portal search index

  • Yoon, Chaebeen;Hong, Seungjee;Kim, Sounghun
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.955-969
    • /
    • 2019
  • Analyzing on-line consumer responses is directly related to the management performance of food companies. Therefore, this study collected and analyzed data from an on-line portal site created by consumers about food companies with issues and examined the relationships between the data and the management performance. Through this process, we identified consumers' awareness of these companies obtained from big data analysis and analyzed the relationship between the results and the sales and stock prices of the companies through a time-series graph and correlation analysis. The results of this study were as follows. First, the result of the text mining analysis suggests that consumers respond more sensitively to negative issues than to positive issues. Second, the emotional analysis showed that companies' ethics issues (Enterprise 3 and 4) have a higher level of emotional continuity than that of food safety issues. It can be interpreted that the problem of ethical management has great influence on consumers' purchasing behavior. Finally, In the case of all negative food issues, the number of word frequency and emotional scores showed opposite trends. As a result of the correlation analysis, there was a correlation between word frequency and stock price in the case of all negative food issues and also between emotional scores and stock price. Recently, studies using big data analytics have been conducted in various fields. Therefore, based on this research, it is expected that studies using big data analytics will be done in the agricultural field.

Processing large-scale data with Apache Spark (Apache Spark를 활용한 대용량 데이터의 처리)

  • Ko, Seyoon;Won, Joong-Ho
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.6
    • /
    • pp.1077-1094
    • /
    • 2016
  • Apache Spark is a fast and general-purpose cluster computing package. It provides a new abstraction named resilient distributed dataset, which is capable of support for fault tolerance while keeping data in memory. This type of abstraction results in a significant speedup compared to legacy large-scale data framework, MapReduce. In particular, Spark framework is suitable for iterative machine learning applications such as logistic regression and K-means clustering, and interactive data querying. Spark also supports high level libraries for various applications such as machine learning, streaming data processing, database querying and graph data mining thanks to its versatility. In this work, we introduce the concept and programming model of Spark as well as show some implementations of simple statistical computing applications. We also review the machine learning package MLlib, and the R language interface SparkR.

HF-IFF: Applying TF-IDF to Measure Symptom-Medicinal Herb Relevancy and Visualize Medicinal Herb Characteristics - Studying Formulations in Cheongkangeuigam - (HF-IFF: TF-IDF를 응용한 병증-본초 연관성(relevancy) 측정과 본초 특성의 시각화 -청강의감 방제를 대상으로-)

  • Oh, Junho
    • The Korea Journal of Herbology
    • /
    • v.30 no.3
    • /
    • pp.63-68
    • /
    • 2015
  • Objectives : We applied the term weighting method used in the field of data search to quantify relevancy between symptoms and medicinal herbs, and, based on this, we aim to introduce a method of visualizing the characteristics of medicinal herbs. Methods : We proposed HF-IFF, an adaptation of TF-IDF, which is a term weighting measurement method adapted in the field of data search. Using this method, we deduced relevancy between symptoms and medicinal herbs In Cheongkangeuigam that was published in 1984 by organizing the medical theory of Cheongkang, Kim Younghoon, and visualized this as a graph in order to compare the characteristics of medicinal herbs used for different symptoms. Results : HF-IFF is the product of HF and IFF, where HF is the frequency of the relevant medicinal herb for a set of symptoms, and IFF is the inverse of the number of formulations (FF) containing that herb. A total of 251 types of medicinal herb are used in Cheongkangeuigam, and 1538 formulations are classified according to 67 types of symptom. The overall mean for HF-IFF was 0.491, with a maximum of 4.566 and a minimum of 0.013. Conclusions : In spite of several limitations, we were able to use HF-IFF to measure relevancy between symptoms and medicinal herbs, with formulations as an intermediate. We were able to use the quantified results to visually express the characteristics of the herbs used for symptoms by bubble chart and word-cloud from HF-IFF.

Automatic Construction of Reduced Dimensional Cluster-based Keyword Association Networks using LSI (LSI를 이용한 차원 축소 클러스터 기반 키워드 연관망 자동 구축 기법)

  • Yoo, Han-mook;Kim, Han-joon;Chang, Jae-young
    • Journal of KIISE
    • /
    • v.44 no.11
    • /
    • pp.1236-1243
    • /
    • 2017
  • In this paper, we propose a novel way of producing keyword networks, named LSI-based ClusterTextRank, which extracts significant key words from a set of clusters with a mutual information metric, and constructs an association network using latent semantic indexing (LSI). The proposed method reduces the dimension of documents through LSI, decomposes documents into multiple clusters through k-means clustering, and expresses the words within each cluster as a maximal spanning tree graph. The significant key words are identified by evaluating their mutual information within clusters. Then, the method calculates the similarities between the extracted key words using the term-concept matrix, and the results are represented as a keyword association network. To evaluate the performance of the proposed method, we used travel-related blog data and showed that the proposed method outperforms the existing TextRank algorithm by about 14% in terms of accuracy.

Analysis of Social Network According to The Distance of Characters Statements (소설 등장인물의 텍스트 거리를 이용한 사회 구성망 분석)

  • Park, Gyeong-Mi;Kim, Sung-Hwan;Cho, Hwan-Gue
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.4
    • /
    • pp.427-439
    • /
    • 2013
  • With the fast development of complex science, lots of social networks are studied. We know that the social network is widely applied in analyzing issues in human culture, economics and web sciences. Recently we witness that some researchers began to compare the social network constructed from fiction literatures(literature social network) and the real social network obtained from practice. But we point that previous approaches for literature social network have some drawbacks since they completely depend on the biographical dictionary constructed for a designated literature. So since the previous approach focus on the few important characters and peoples around them, we can not understand the global structure of all characters appeared in the literature at least once. We propose one method to extract all characters appeared in the literature and how to make the social network from that information. Also we newly propose K-critical network by applying frequency of the named characters and the strength of relationship among all textual characters. Our experiment shows that the K-critical measure could be one crucial quantitative measure to compute the relationship strength among characters appeared in the object literature.

Molecular Characterization of Legionellosis Drug Target Candidate Enzyme Phosphoglucosamine Mutase from Legionella pneumophila (strain Paris): An In Silico Approach

  • Hasan, Md. Anayet;Mazumder, Md. Habibul Hasan;Khan, Md. Arif;Hossain, Mohammad Uzzal;Chowdhury, A.S.M. Homaun Kabir
    • Genomics & Informatics
    • /
    • v.12 no.4
    • /
    • pp.268-275
    • /
    • 2014
  • The harshness of legionellosis differs from mild Pontiac fever to potentially fatal Legionnaire's disease. The increasing development of drug resistance against legionellosis has led to explore new novel drug targets. It has been found that phosphoglucosamine mutase, phosphomannomutase, and phosphoglyceromutase enzymes can be used as the most probable therapeutic drug targets through extensive data mining. Phosphoglucosamine mutase is involved in amino sugar and nucleotide sugar metabolism. The purpose of this study was to predict the potential target of that specific drug. For this, the 3D structure of phosphoglucosamine mutase of Legionella pneumophila (strain Paris) was determined by means of homology modeling through Phyre2 and refined by ModRefiner. Then, the designed model was evaluated with a structure validation program, for instance, PROCHECK, ERRAT, Verify3D, and QMEAN, for further structural analysis. Secondary structural features were determined through self-optimized prediction method with alignment (SOPMA) and interacting networks by STRING. Consequently, we performed molecular docking studies. The analytical result of PROCHECK showed that 95.0% of the residues are in the most favored region, 4.50% are in the additional allowed region and 0.50% are in the generously allowed region of the Ramachandran plot. Verify3D graph value indicates a score of 0.71 and 89.791, 1.11 for ERRAT and QMEAN respectively. Arg419, Thr414, Ser412, and Thr9 were found to dock the substrate for the most favorable binding of S-mercaptocysteine. However, these findings from this current study will pave the way for further extensive investigation of this enzyme in wet lab experiments and in that way assist drug design against legionellosis.

Employee's Discontent Text Analysis on Anonymous Company Review Web and Suggestions for Discontent Resolve (기업 리뷰 웹 사이트 텍스트 분석을 통한 직원 불만 표현 추출과 불만 원인 도출 및 해소 방안)

  • Baek, HyeYeon;Park, Yongsuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.4
    • /
    • pp.357-364
    • /
    • 2019
  • As industrial information disclosure by insider's rate is around 80%, most of relevant researches explain briefly its causes are discontent of salary or human resources system. This paper scrapes texts on Jobplanet, an anonymous company review website and analyzes discontent keyword by 7 related area and their contexts to find out more details on brief causes referred above. After drawing LGG (Local Grammar Graph) by each areas with related dictionary list, this paper shows an example of concordance as a proof and several ways for human resources leakage prevention. Finally, text analysis results are compared with previous researches based on survey with limited questions and answers. This study is meaningful to expand the scope of employee discontent analysis with company review text and provide more specific, granular and honest discontent vocabularies.

Twitter Issue Tracking System by Topic Modeling Techniques (토픽 모델링을 이용한 트위터 이슈 트래킹 시스템)

  • Bae, Jung-Hwan;Han, Nam-Gi;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.109-122
    • /
    • 2014
  • People are nowadays creating a tremendous amount of data on Social Network Service (SNS). In particular, the incorporation of SNS into mobile devices has resulted in massive amounts of data generation, thereby greatly influencing society. This is an unmatched phenomenon in history, and now we live in the Age of Big Data. SNS Data is defined as a condition of Big Data where the amount of data (volume), data input and output speeds (velocity), and the variety of data types (variety) are satisfied. If someone intends to discover the trend of an issue in SNS Big Data, this information can be used as a new important source for the creation of new values because this information covers the whole of society. In this study, a Twitter Issue Tracking System (TITS) is designed and established to meet the needs of analyzing SNS Big Data. TITS extracts issues from Twitter texts and visualizes them on the web. The proposed system provides the following four functions: (1) Provide the topic keyword set that corresponds to daily ranking; (2) Visualize the daily time series graph of a topic for the duration of a month; (3) Provide the importance of a topic through a treemap based on the score system and frequency; (4) Visualize the daily time-series graph of keywords by searching the keyword; The present study analyzes the Big Data generated by SNS in real time. SNS Big Data analysis requires various natural language processing techniques, including the removal of stop words, and noun extraction for processing various unrefined forms of unstructured data. In addition, such analysis requires the latest big data technology to process rapidly a large amount of real-time data, such as the Hadoop distributed system or NoSQL, which is an alternative to relational database. We built TITS based on Hadoop to optimize the processing of big data because Hadoop is designed to scale up from single node computing to thousands of machines. Furthermore, we use MongoDB, which is classified as a NoSQL database. In addition, MongoDB is an open source platform, document-oriented database that provides high performance, high availability, and automatic scaling. Unlike existing relational database, there are no schema or tables with MongoDB, and its most important goal is that of data accessibility and data processing performance. In the Age of Big Data, the visualization of Big Data is more attractive to the Big Data community because it helps analysts to examine such data easily and clearly. Therefore, TITS uses the d3.js library as a visualization tool. This library is designed for the purpose of creating Data Driven Documents that bind document object model (DOM) and any data; the interaction between data is easy and useful for managing real-time data stream with smooth animation. In addition, TITS uses a bootstrap made of pre-configured plug-in style sheets and JavaScript libraries to build a web system. The TITS Graphical User Interface (GUI) is designed using these libraries, and it is capable of detecting issues on Twitter in an easy and intuitive manner. The proposed work demonstrates the superiority of our issue detection techniques by matching detected issues with corresponding online news articles. The contributions of the present study are threefold. First, we suggest an alternative approach to real-time big data analysis, which has become an extremely important issue. Second, we apply a topic modeling technique that is used in various research areas, including Library and Information Science (LIS). Based on this, we can confirm the utility of storytelling and time series analysis. Third, we develop a web-based system, and make the system available for the real-time discovery of topics. The present study conducted experiments with nearly 150 million tweets in Korea during March 2013.

Analysis of Waterpark Status and Recognition Using Big Data Analysis (빅데이터 분석을 활용한 워터파크 현황 및 인식 분석)

  • Kim, Jae-Hwan;Lee, Jae-Moon
    • Journal of Digital Convergence
    • /
    • v.15 no.10
    • /
    • pp.525-535
    • /
    • 2017
  • The purpose of this study aims to examine consumer perception and current status of water park. The Naver and Daum were used for data collection channels and the keyword 'water park' was used for data retrieval. The data analysis period was limited to the study period from January 1, 2015 to December 31, 2016 for a total of two years. First, as a result of the frequency analysis, hidden cameras, Lotte water park, arrests, suspects, gimhae were in top 5 in 2015, Lotte water park, swimming, summer, opening, admission ticket were in top 5 in 2016. Second, as a result of the connection degree central analysis, hidden camera, arrest, suspect, female, shower room were in top 5 in 2015, swimming, Lotte water park, summer and One Mount, admission ticket were in top 5 in 2016. Third, as a result of the N-GRAM network graph, the water park/hidden camera, the hidden camera/hidden camera, the suspect/arrest, the Gimhae/Lotte water park, water park/suspect were in top 5 in 2015, and One Mount/water park, Gimhae/Lotte water park, water park/admission ticket, water park/water park, water park/opening were in top 5 in 2016. Fourth, as a result of the CONCOR analysis, three groups in 2015 and two groups in 2016 were formed.

Web Site Keyword Selection Method by Considering Semantic Similarity Based on Word2Vec (Word2Vec 기반의 의미적 유사도를 고려한 웹사이트 키워드 선택 기법)

  • Lee, Donghun;Kim, Kwanho
    • The Journal of Society for e-Business Studies
    • /
    • v.23 no.2
    • /
    • pp.83-96
    • /
    • 2018
  • Extracting keywords representing documents is very important because it can be used for automated services such as document search, classification, recommendation system as well as quickly transmitting document information. However, when extracting keywords based on the frequency of words appearing in a web site documents and graph algorithms based on the co-occurrence of words, the problem of containing various words that are not related to the topic potentially in the web page structure, There is a difficulty in extracting the semantic keyword due to the limit of the performance of the Korean tokenizer. In this paper, we propose a method to select candidate keywords based on semantic similarity, and solve the problem that semantic keyword can not be extracted and the accuracy of Korean tokenizer analysis is poor. Finally, we use the technique of extracting final semantic keywords through filtering process to remove inconsistent keywords. Experimental results through real web pages of small business show that the performance of the proposed method is improved by 34.52% over the statistical similarity based keyword selection technique. Therefore, it is confirmed that the performance of extracting keywords from documents is improved by considering semantic similarity between words and removing inconsistent keywords.