• Title/Summary/Keyword: granular soil

Search Result 247, Processing Time 0.026 seconds

A Method Evaluating K0 of Granular Soil using DMT (DMT를 이용한 사질토 정지토압계수 평가방법)

  • Choi, Sung-Kun;Lee, Moon-Joo;Bae, Kyung-Doo;Lee, Woojin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4C
    • /
    • pp.193-200
    • /
    • 2010
  • This study suggests a method predicting at-rest coefficient of earth pressure ($K_0$) in order to evaluate the effect of stress history of granular soil. The method is based on the relation $K_D/K_0={\chi}(E_D/{\sigma}_m{^{\prime}})^{\delta}$, which is developed by combining two previously published relations such as $E_D/{\sigma}_m{^{\prime}}-{\psi}$ and $K_D/K_0-{\psi}$. As $K_D$ and $E_D$ are observed to be sensitive to the pre-stress, both indices are adopted for the estimation of $K_0$ value of granular soil. It is shown that the proposed $K_D/K_0-E_D/{\sigma}_m{^{\prime}}$ relation is insignificantly affected by the stress history. It is concluded from the comparative study that the proposed method, which uses only dilatometer test results to predict the $K_0$ of granular soil, provides more convenient and reliable prediction than other methods which use both CPT and DMT results.

Studies on the Relationship between Standing Crop of Miscanthus sinensis Grassland and Soil Morphological Characteristics (억새초지의 현존량과 토양의 형태적 특성에 관한 연구)

  • 박봉규
    • Journal of Plant Biology
    • /
    • v.21 no.1_4
    • /
    • pp.7-12
    • /
    • 1978
  • The results of the relationship between standing crop of Miscanthus sinensis grassland and soil morphological characteristics are as follows. The Miscanthus sinensis grassland seems to grow well in volcainc ash soil. The depth of A layer was closely related to the standing crop of the Miscanthus sinensis grassland. The root systems of Miscanthus sinensis reached to its maximum in A layer. The root systems of Miscanthus sinensis showed its maximum at 20mm and below(soil hardness). The soil texture of A layer showed SL-SiL. The soil structure of A layer contained Massive-Small Granular. The soil colors of A layer expressed Dark Yellowish Orange-Brownish Black.

  • PDF

Effect of particle size on direct shear deformation of soil

  • Gu, Renguo;Fang, Yingguang;Jiang, Quan;Li, Bo;Feng, Deluan
    • Geomechanics and Engineering
    • /
    • v.28 no.2
    • /
    • pp.135-143
    • /
    • 2022
  • Soils are natural granular materials whose mechanical properties differ according to the size and composition of the particles, so soils exhibit an obvious scale effect. Traditional soil mechanics is based on continuum mechanics, which can not reflect the impact of particle size on soil mechanics. On that basis, a matrix-reinforcing-particle cell model is established in which the reinforcing particles are larger-diameter sand particles and the matrix comprises smaller-diameter bentonite particles. Since these two types of particles deform differently under shear stress, a new shear-strength theory under direct shear that considers the stress concentration and bypass phenomena of the matrix is established. In order to verify the rationality of this theory, a series of direct shear tests with different reinforcing particle diameter and volume fraction ratio are carried out. Theoretical analysis and experimental results showed that the interaction among particles of differing size and composition is the basic reason for the size effect of soils. Furthermore, the stress concentration and bypass phenomena of the matrix enhance the shear strength of a soil, and the volume ratio of reinforcing particles has an obvious impact on the shear strength. In addition, the newly proposed shear-strength theory agrees well with experimental values.

Evaluation of Dynamic Properties through Large Triaxial Test : Development and Verification of Apparatus (대형삼축압축실험을 이용한 동적물성 산정 : 장비구축 및 검증)

  • Lee, Sung-Jin;Kim, Yun-Ki;Lee, Jun-S.;Hwang, Seon-Keun;Park, Jae-Jun
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.640-649
    • /
    • 2010
  • Coarse granular materials such as gravel and crushed stone have been used as an important fill materials to large soil structure of railway, road, dam and so on. Although much studies for general soil materials have been carried out domestically, the studies for coarse materials were insufficient. Particularly, it is the level in which the study for dynamic properties(Elastic modulus and damping ratio) of coarse materials, applies the foreign country literature. This is due to the lack of large equipment for element test. But large soil structures made of coarse granular materials are generally important infrastructures. Therefore, the reliable design parameters for coarse materials should be obtained for safe and economic design, construction and maintenance. Triaxial test is the laboratory test method that is capable of controlling a confining pressure and boundary condition. In this project, we made a multi-purpose large triaxial testing system. This testing system is able to test coarse granular materials with maximum particle diameter of 100mm and support both the load control and displacement control. The load cell is installed inside of triaxial cell and the axial displacement is measured locally in order to control and measure more accurately in the small strain level. The verification test of this testing system was carried out with urethane verification specimens. So, from now on the useful information for coarse granular materials are expected to suggested by performing many tests with various material and condition.

  • PDF

Stability Analysis of Soil Nailing System with Wall Displacements (벽체변위를 고려한 Soil Nailing공법의 안정해석)

  • Kim, Hong-Taek;Gang, In-Gyu;Seong, An-Je
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.119-122
    • /
    • 1994
  • An analytical procedure is described to estimate the mobilized tensile forces along the effective lengths of nails. Based on the horizontal focing displacements of a nailed-soil wall experiencing outward tilt about the toe with granular soil deposit, the variation of nail-soil friction coefficient is modeled. Also, the method of overall stability analysis of a nailed-soil wall is presented using the Morgenstem-Price limit-equilibrium slice method. The results predicted by the developed procedure are compared with test measurements. The comparisons show in general good agreement.

  • PDF

A Estimation Method of Settlement for Granular Compaction Pile (조립토 다짐말뚝의 침하량 산정기법)

  • Kim, Hong-Taek;Hwang, Jung-Soon;Park, Jun-Yong;Yoon, Chang-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.286-293
    • /
    • 2005
  • In soft ground the settlement criterion usually governs. Therefore, it is very important not only reasonable assessment of the allowable bearing capacity of the soil but also reasonable assessment of settlement. In the previous studies by many other researchers, load concentration ratio and settlement reduction factor are usually proposed for estimating the settlement of granular compaction piles. In the previous studies, the reinforced ground with granular compaction piles is simplified as composite ground and the analysis is performed with in the basis of this assumption. However, the lateral deformation of granular compaction pile could not be considered and only the relative vertical strength between pile and soils could be considered in the analysis. In this study, a method adapting the Tresca failure criterion is proposed for calculating settlement of granular compaction pile. Proposed method can be considered the strength of pile material, pile diameter, installing distance of pile and the deformation behavior of vertical and horizontal directions of pile. In the presented study, large-scale field load test is performed and the results are described. Also, predictions of settlements from the proposed method are compared with the results of the load test. In addition, a series of parametric study is performed and the design parameters are analyzed.

  • PDF

Adsorption and catalytic ozonation of aquatic organic compound by acid-treated granular activated carbon (산 처리한 활성탄을 이용한 수중 유기물의 흡착 및 오존 분해)

  • Nam, Yun-Seon;Rhee, Dong-Seok
    • Journal of Industrial Technology
    • /
    • v.31 no.B
    • /
    • pp.127-132
    • /
    • 2011
  • Humic substances is accounted for for the largest proportion in natural organic matter(NOM) and NOM is widely distributed in varying concentration in all aquatic and soil. They can affect water quality adversely in several ways by contributing undesirable color, complexing with metal and yielding metal concentrations exceeding normal solubility. Ozonation is one of the efficient treatments for degradation of humic substances which cause some problems in water treatment. Especially, the combination of ozone and granular activated carbon was applied to degradation humic acid in aquatic system. The aim of this work to test the available of acid-treated granular activated carbon as catalyst in the ozonation of humic acid.

  • PDF

Behavior characteristics of Soft Ground Improved by Granular Pile (Granular Pile에 의해 개량된 연약지반의 거동특성)

  • Chun, Byung-Sik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.4
    • /
    • pp.63-72
    • /
    • 2001
  • As construction cases on soft ground are increasing, the necessity of ground improvement is also increasing. Granular pile is one of the methods for soft clay and for loose sandy soil. In our country, SCP(Sand Compaction Pile) method using sand material has been mainly used to improve soft ground, but Granular pile with crushed-stone was not used much. However, alternative material such that crushed-stone is needed to substitute for sand due to the environmental and economical problems. In this study, staged load test and consolidation test were performed in the laboratory to observe the behavior of soft ground improved by Granular pile. In order to evaluate the characteristics such as bearing capacity, drainage, and settlement, sand and crushed-stone were applied as each pile material. The test results show that crushed-stone has higher bearing capacity and less settlement than those of sand under similar pore water pressure condition. Therefore, crushed-stone is determined to be appropriate as substitute for sand.

  • PDF

Improvement Effects of Soft Ground by Granular Pile (Granular Pile에 의한 연약지반의 개량효과)

  • 천병식;김백영
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.43-54
    • /
    • 2002
  • As construction cases of structure are increasing in the soft ground, the necessity of ground improvement is also increasing. Granular pile is one of the improvement methods for soft ground and for loose sandy soil. In domestic, SCP(Sand Compaction Pile) method using sand material has been mainly used to improve soft ground, but Granular pile with crushed-stone was not used much. However, alternative material such as crushed-stone is needed to substitute for sand due to the environmental and economical problems. In this study, staged load test and consolidation test were performed in the laboratory to observe the behavior of soft ground improved by Granular pile. In order to evaluate the characteristics such as bearing capacity, drainage, md settlement, sand and crushed-stone were applied as each pile material. The test results show that crushed-stone has higher bearing capacity and less settlement than those of sand under similar fore water pressure condition. Therefore, crushed-stone is determined to be appropriate as the substitute for sand.

A Case Study of Sediment Transport on Trenched Backfill Granular and Cohesive Material due to Wave and Current

  • Choi, Byoung-Yeol;Lee, Sang-Gil;Kim, Jin-Kwang;Oh, Jin-Soo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.2
    • /
    • pp.86-98
    • /
    • 2016
  • In this study, after the installation of a subsea pipeline, backfilling was performed in the trenched area. During these operations, a stability problem in the subsea pipeline occurred. The pipeline was directly impacted by environmental loading such as waves and currents that were caused by backfill material when scouring or sediment transport and siltation was carried out. Therefore, this study reviewed whether trenching was necessary, and conducted research into an indigenous seabed property that contains granular soil. A study of cohesive soil was also conducted in order to cross-correlate after calculating the values of the critical Shields parameter relevant to elements of the external environment such as waves and current, and the shear Shields parameter that depends on the actual shearing stress. In case of 1), sedimentation or erosion does not occur. In the case of 2), partial sedimentation or erosion occurs. If the case is 3), full sedimentation or erosion occurs. Therefore, in the cases of 1) or 2), problems in structural subsea pipeline stability will not occur even if partial sedimentation or erosion occurs. This should be reflected particularly in cases with granular and cohesive soil when a reduction in shear strength occurs by cyclic currents and waves. In addition, since backfilling material does not affect the original seabed shear strength, a set-up factor should be considered to use a reduced of the shear strength in the original seabed.