• Title/Summary/Keyword: granular soil

Search Result 247, Processing Time 0.026 seconds

Numerical Modeling of Soil-Cement based on Discrete Element Method (개별요소법을 이용한 시멘트 혼합토의 수치모델링)

  • Jeong, Sang-Guk
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.4
    • /
    • pp.33-42
    • /
    • 2016
  • Discrete Element Method was conducted for rock and coarse-grained materials in development of granular mechanics and related numerical model due to analyze and apply micromechanical property. And it was verified that the analysis to consider bonding effect was insufficient. In this study, to overcome limits of existing method, it was conducted to analyze difference between indoor test result and bonding effect using $PFC^{3D)}$. For indoor test of mixed soil, uniaxial compression tests by curing time and by cement content were performed. And, DEM to suitable for each condition of indoor test was conducted. In the result of this study, in terms of geotechnics, it was verified that DEM can be used for application as numerical laboratory as well as prediction of micro and macro behavior about bonding effect of mixed soil.

Evaluation of Minimum Depth Criterion and Reinforcement Effect of the Soil Cover in a Long-span Soil-steel Bridge (장지간 지중강판구조물의 최소토피고 평가 및 토피지반 보강에 대한 수치해석)

  • 이종구;조성민;정현식;김명모
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.67-78
    • /
    • 2004
  • Soil-steel bridges are made of flexible corrugated steel plates buried in the well-compacted granular soil. One kind of possible collapses of these structures could be initiated by shear or tension failure in the soil cover subjected to vehicle loads. Current design codes provide the requirements for the minimum depth of the soil cover to avoid problems associated with soil cover failures. However, these requirements were developed for short span (less than 7.7 m) structures which are made of unstiffened plates of standard corrugation (150$\times$50 m). Numerical analyses were carried out to investigate the behavior of long span soil steel bridges according to thickness of the soil cover. The span of structures were up to 20 m and deep corrugated plates (381$\times$140 m) were used. The analysis showed that the minimum cover depth of 1.5 m could be sufficient to prevent the soil cover failure in the structures with a span exceeding 10 m. Additional analyses were performed to verify the reinforcement effect of the concrete relieving slab which can be a special feature to reduce the live-load effects. Analyses revealed that the bending moment of the conduit wall with a relieving slab was less than 20% of that without a relieving slab in a case of shallow soil cover conditions.

Analytical Study on Distribution of Stresses Induced in Soil Beam (지반보의 응력분포에 관한 해석적 연구)

  • Lee, Seung-Hyun;Kim, Eung-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.5009-5014
    • /
    • 2015
  • Hydraulic uplift which is caused by the action of pore water pressure can be occurred in clay underlain by granular soil during conducting narrow excavation. Estimation of hydraulic uplift is done by considering soil beam. In order to execute more precise estimation of hydraulic uplift, determination of stress distribution in soil beam is necessary. This study presents stress distribution and displacement distribution in the soil beam based on the theory of elasticity. Stress distribution developed in the soil beam by self weight was derived using stress function depicted by $5^{th}$ order of polynomial and it was seen that vertical stresses along the depth of the soil beam show parabolic distribution and those directions be downward. Regarding soil beam which has the weight of $16kN/m^3, thickness and depth are 1m respectively, maximum vertical stress was about 1.7kPa. Stress distribution by the aciton of pore water pressure was derived via superposition of the stresses corresponding to the self weight and it can be seen that vertical compressive stresses act along the depth of the soil beam when the magnitude of pore water pressure equal to 5 times of the self weight is considered. Equations for prediction of the displacements in the soil beam are also presented.

Soil arching analysis in embankments on soft clays reinforced by stone columns

  • Fattah, Mohammed Y.;Zabar, Bushra S.;Hassan, Hanan A.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.4
    • /
    • pp.507-534
    • /
    • 2015
  • The present work investigates the behavior of the embankment models resting on soft soil reinforced with ordinary and stone columns encased with geogrid. Model tests were performed with different spacing distances between stone columns and two lengths to diameter ratios (L/d) of the stone columns, in addition to different embankment heights. A total number of 42 model tests were carried out on a soil with undrianed shear strength $${\sim_\sim}10kPa$$. The models consist of stone columns embankment at s/d equal to 2.5, 3 and 4 with L/d ratio equal 5 and 8. Three embankment heights; 200 mm, 250 mm and 300 mm were tested for both tests of ordinary (OSC) and geogrid encased stone columns (ESC). Three earth pressure cells were used to measure directly the vertical effective stress on column at the top of the middle stone column under the center line of embankment and on the edge stone column for all models while the third cell was placed at the base of embankment between two columns to measure the vertical effective stress in soft soil directly. The performance of stone columns embankments relies upon the ability of the granular embankment material to arch over the 'gaps' between the stone columns spacing. The results showed that the ratio of the embankment height to the clear spacing between columns (h/s-d) is a key parameter. It is found that (h/s-d)<1.2 and 1.4 for OSC and ESC, respectively; (h is the embankment height, s is the spacing between columns and d is the diameter of stone columns), no effect of arching is pronounced, the settlement at the surface of the embankment is very large, and the stress acting on the subsoil is virtually unmodified from the nominal overburden stress. When $(h/s-d){\geq}2.2$ for OSC and ESC respectively, full arching will occur and minimum stress on subsoil between stone columns will act, so the range of critical embankment height will be 1.2 (h/sd) to 2.2 (h/s-d) for both OSC and ESC models.

Granulation Characteristics of Mono-granular NPK(10-0-30) Fertilizer Incorporated with Rock-Phosphate Powder and its Effects on Tobacco Plant (인광석분말을 증량제로 사용한 연초(煙草)재배용 복합비료(10-0-30)의 조립(造粒)특성 및 비효)

  • Lee, Yun-Hwan;Jeong, Hun-Chae;Kim, Yong-Yeon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.5
    • /
    • pp.290-295
    • /
    • 2002
  • Fertilizer granulation test was carried out by a small pan granulator. A premixture composed of SOP 60%, urea 22% and RP powder 18% was rolled in the pan granulator while 10% phosphoric acid solution(binder) was sprayed on the rolling powder bed. Granules were developed very fast along with a little amount of binder. Hardness, brittle ratio in water and hygroscopicity of granules were improved enough to evaluate physical properties of the fertilizer. Growth responses of tobacco plant to the fertilizer were investigated at seedling and flowering stage by pot experiment under plastic film roof. Seedlings showed poor growth at nursery pot cell. In virgin soil with deficient available phosphate tobacco plant showed poor growth until budding and flowering stage but good growth in tillage soil with high cumulative phosphate.

Effects of Control Methods on Yields of Oriental Melon in Fields Infested with Meloidogyne arenaria (방제방법이 땅콩뿌리혹선충 밀도와 참외 수량에 미치는 영향)

  • 김동근;최동로;이상범
    • Research in Plant Disease
    • /
    • v.7 no.1
    • /
    • pp.42-48
    • /
    • 2001
  • The effect of cultural, physical and chemical control methods on the population density of Meloidogyne arenaria second-stage juveniles (J2) and on fruit yields of oriental melon was investigated at Seongju Fruit Vegetable Experiments Station, Kyungpook province, Korea, for two years from 1999 to 2000. Crops used in a rotation prior to Oriental melon were rice, corn, sesame, and green onion. The physical methods used were either solarization, soil addition or soil drying, and a nematicide, fosthiazate of granular formula, was used as the chemical method, applying at a rate of 300g a. i./10 a. Growing rice in the rotation, solarization, and soil addition controlled the nematode disease most effectively, reducing the number of J2 by 90% and increasing fruit yields two times. However, the effects of these control methods on the J2 population were limited to the early growing season; the J2 population increased later, suggesting that additional control practices may be needed in the following season. The next effective control methods were use of corn in the rotation, the nematicide application, and soil drying. The nematicide application was effective only for the early fruit yield, but neither for the late nor for the total yields. Use of sesame or green onion in the rotation was not effective in controlling the nematode.

  • PDF

Estimating Unsaturated Shear Strength and Yield Load of Compacted Aggregate Sub-base Materials (다져진 보조기층 재료의 불포화 전단강도 및 항복하중 평가)

  • Jeon, Hye-Ji;Park, Seong-Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4D
    • /
    • pp.571-576
    • /
    • 2011
  • In general, conventional road pavements are designed under the assumption that the shear strength of geomaterials are under saturated state. In reality, however, most of the pavement geomaterials exists under the unsaturated state. To deal with this gap between saturated and unsaturated conditions, in this paper, unsaturated shear strength was estimated using the results from the triaxial compression test and soil-water characteristics curves. Then, yield loads were assessed using 2-Dimensional finite element method with the selected nonlinear elastic model and the Mohr-Coulomb yield criteria. In addition, various unsaturated condition and surface layer effects on the yield load of granular materials were identified. Therefore, the results demonstrated would provide a possibility to estimate bearing capacity of paved or unpaved roads using unsaturated soil mechanics.

Treatment of Melamine by GAC Adsorption According to Adsorbent Size: Kinetics and Dispersion-Diffusion (흡착제 크기에 따른 GAC의 멜라민 흡착 처리 : 반응속도와 분산-확산)

  • Lee, Jai-Yeop;Lee, Sangjung;Han, Ihnsup
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.3
    • /
    • pp.65-72
    • /
    • 2013
  • Adsorption of melamine was examined using columns packed with granular activated carbon (GAC). Raw GAC was sieved with 20, 40, 60 and 80 mesh to determine the influence of adsorbent particle size on reaction and diffusion. The mass ratio of the adsorption capacity of GAC for melamine ranged from 9.19 to 11.06%, and adsorption rates increased with decreasing particle size within this range. Rate constants between 3.295 ~ 4.799 $min^{-1}$ were obtained using a pseudofirst-order equation that was used to determine adsorption kinetics. A surface diffusion model was adapted to take into account the unsteady-state equation of a spherical adsorbent by converting the surface concentration from a constant to a variable governed by a dispersion equation. The calculated values were fit with the experimental results by using the diffusion coefficients as regression parameters. The modified equation exhibited a more precise agreement with respect to the sum of the absolute error (SAE).

Nonlinear Subgrade Model-Based Comparison Study between the Static and Dynamic Analyses of FWD Nondestructive Tests (노상의 비선형 모델에 근거한 비파괴 FWD 시험에 있어 정적과 동적 거동의 비교연구)

  • Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.19 no.1
    • /
    • pp.73-80
    • /
    • 2017
  • PURPOSES : This paper presents a comparison study between dynamic and static analyses of falling weight deflectometer (FWD) testing, which is a test used for evaluating layered material stiffness. METHODS: In this study, a forward model, based on nonlinear subgrade models, was developed via finite element analysis using ABAQUS. The subgrade material coefficients from granular and fine-grained soils were used to represent strong and weak subgrade stiffnesses, respectively. Furthermore, the nonlinearity in the analysis of multi-load FWD deflection measured from intact PCC slab was investigated using the deflection data obtained in this study. This pavement has a 14-inch-thick PCC slab over fine-grained soil. RESULTS: From case studies related to the nonlinearity of FWD analysis measured from intact PCC slab, a nonlinear subgrade model-based comparison study between the static and dynamic analyses of nondestructive FWD tests was shown to be effectively performed; this was achieved by investigating the primary difference in pavement responses between the static and dynamic analyses as based on the nonlinearity of soil model as well as the multi-load FWD deflection. CONCLUSIONS : In conclusion, a comparison between dynamic and static FEM analyses was conducted, as based on the FEM analysis performed on various pavement structures, in order to investigate the significance of the differences in pavement responses between the static and dynamic analyses.

Development of a Mathematical Model for Simulating Removal Mechanisms of Heavy Metals using Biocarrier Beads (미생물 담체를 이용한 납 제거기작 모의를 위한 수학적 모델의 개발)

  • Seo, Hanna;Lee, Minhee;Wang, Sookyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.4
    • /
    • pp.8-18
    • /
    • 2013
  • Biocarrier beads with dead biomass, Bacillus drentensis, immobilized in polymer polysulfone were synthesized to remove heavy metals from wastewater. To identify the sorption mechanisms and theoretical nature of underlying processes, a series of batch experiments were carried out and a mathematical model was developed to quantify the biosorption of Pb(II) by the biocarrier beads. A series of mass balance equations for representing mass transfer of metal sorbents in biocarrier beads and surrounding solution were established. Major model parameters such as external mass transfer coefficient and maximum sorption capacity, etc. were determined from pseudo-first-order kinetic models and Langmuir isotherm model based on kinetic and equilibrium experimental measurements. The model simulation displays reasonable representations of experimental data and implied that the proposed model can be applied to quantitative analysis on biosorption mechanisms by porous granular beads. The simulation results also confirms that the biosorption of heavy metal by the biocarrier beads largely depended on surface adsorption.