• 제목/요약/키워드: granular filtration

검색결과 57건 처리시간 0.031초

필터 분리기를 이용한 여재별 도로퇴적물의 오염물질 제거효율 비교 (Comparison of Pollutant Removal Efficiency in Road Sediment with Media Using Filter Separator)

  • 방기웅;이준호;최창수;이상일
    • 대한환경공학회지
    • /
    • 제29권3호
    • /
    • pp.332-340
    • /
    • 2007
  • 강우 시 도로에서의 초기 유출수는 유 무기물질, 중금속 등 유해물질이 부유물질에 흡착되어 거동되는 비율이 높으므로 부유물질을 분리할 수 있다면 상당량의 오염부하를 줄일 수가 있다. 따라서 본 연구의 목적은 도로에서 배출되는 강우유출수의 오염저감을 위해 필터를 이용한 수리동력학적 필터분리기를 이용하여 부유물질을 처리함에 있어 필터별 오염물질 처리효율을 비교 평가함으로서 도로유출수에 대한 오염물질 저감을 위한 현장에의 적용 방안을 모색함에 있다. 사용한 여재는 perlite, 활성탄, zeolite와 이들의 혼합소재를 대상으로 하여 칼럼여과실험과 필터분리기를 이용한 현장에서의 처리실험을 통해 여재별 처리정도 및 처리효율을 비교하였다. 칼럼여과실험결과 대체로 SS는 활성탄과 perlite, 활성탄, 소성한 zeolite의 혼합여재가, 중금속은 zeolite 및 활성탄이 양호하였다. HDFS에 의한 처리실험은 perlite와 활성탄 혼합여재가 도로유출수 처리에 적합할 것으로 조사되었다. 혼합여재에 대한 평균 처리 효율은 여재층이 9 cm, 수면적부하율 192-1,469 $m^3/m^2/d$의 범위에서 SS 48.1%, BOD 31.9%, COD 32.6%, TN 15.5%, TP 17.3%의 제거율을 나타내었고, 중금속인 경우 Fe 26.0%, Cu 19.4%, Cr 25.7, Zn 16.6%, Pb 15.0%로 조사되었다. 도로유출수의 처리를 위한 HDFS의 여재로서는 perlite와 활성탄을 혼합한 여재가 적절하였다.

섬유상활성탄소를 이용한 Humic Acid 공존시 페놀의 흡착특성에 관한 연구 (A Study on the Adsorption Characteristics of Phenol in the presence of Humic Acid Using Activated Carbon Fiber)

  • 탁성제;서성원;김성순;김진만
    • 상하수도학회지
    • /
    • 제14권1호
    • /
    • pp.54-61
    • /
    • 2000
  • Recently, our circumstances are threatened by an accident that leakage of under ground storage tank and illegal dumping of synthetic organic compounds at chemical plants and many treatment methods, Activated carbon adsorption, Ozonization, Membrane filtration and Photocatalystic oxidation, are developed to remove such a synthetic organic compounds. And it has reported that Activated carbon adsorption have a great removal efficiency to nondegradable matters and organic compounds which have a high molecular weight. Comparing with other adsorbents, Activated carbon adsorption have a worse efficiency when ad desorption speed is low. Thus improved type of adsorbents was invented and one of those is Activated Carbon Filter. The purpose of this study was getting information about adsorption characteristic phenol which can be applied Activated Carbon Fiber and Granular Activated Carbon. In detail, With comparing removal characteristics of phenol in the presence Humic Acid using Activated Carbon Fiber(ACF) and Granular Activated. Carbon(GAC), it is to certify an effective application of Activated Carbon Fiber. At the range of this study, Batch test, Isotherm adsorption test and Factorial analysis, following conclusion were obtained from the results of this study. Batch test was carried to know time of adsorption equilibrium. In this study about time of adsorption equilibrium by ACF was faster than GAC's, for developed micropore of ACF. From the result of phenol adsorption test, High removal rate of adsorption is shown at pH 5. The result of lsotherm adsorption test, it has represented that the Freundlich's isotherm is most suitable one in others, that a ACF's adsorption capacity is more excellent than GAC's. Adsorption of phenol exiting humic acid is decreased getting raised humic acid concentration. Since ACF's micropore is developed at this time, an effect of high molecular humic acid is lower. Factorial analysis was carried to know about Main effect which was injection dosage of adsorbent in the range of this study.

  • PDF

정수처리공정 중 자연유기물질의 분자량 분포 및 형광특성 변화 모니터링 (Monitoring of Changes in Molecular Weight Distribution and Fluorescence Properties of Dissolved Matter (DOM) in Water Treatment Processes)

  • 박민혜;허진
    • 한국물환경학회지
    • /
    • 제23권6호
    • /
    • pp.843-849
    • /
    • 2007
  • Monitoring of NOM characteristics is important for improving removal efficiency of natural organic matter (NOM) in water treatment processes. In this study, several NOM characteristics, which include specific UV absorbance (SUVA), total carbonate content, molecular weight distribution, and fluorescence properties, were measured using samples collected from a pilot-scale water treatment plant consisting of coagulation/flocculation (C/F), filtration, ozonation and granular activated carbon (GAC) processes. The highest removal of NOM was observed in C/F and filtration processes as demonstrated by the reduction of dissolved organic carbon (DOC) by 25% and 21%, respectively. Despite nearly no change in DOC, however, the lowest SUVA value and the highest total carbohydrate content were observed in the sample from ozonation process. This indicates that non-degradable aromatic compounds become depleted and biodegradable organic compounds are enriched during the process. Comparison of synchronous fluorescence spectra of the samples showed that ozoation process increased protein-like fluorescence while it decreased fulvic-like and terrestrial humic-like fluorescence. Consistently, a slight peak of protein-like fluorescence was observed in the sample from ozonation process. The greatest change in molecular weight distributions of the samples was observed in C/F process. Comparison of size exclusion chromatogram of the samples revealed that NOM fractions with the molecular weight greater than 2000 Da were reduced by over 90% after C/F process. SUVA values and total carbohydrate content of the samples were well correlated with a ratio of protein-like fluorescence and terrestrial humic-like fluorescence intensities with the correlation coefficients of 0.99 and 0.91, respectively. This suggests that synchronous fluorescence properties of NOM could be used as useful tolls for monitoring changes of some NOM characteristics during water treatment processes.

MLE공법과 황이용 탈질 프로세스의 전과정 탄소 배출량 평가 (Life Cycle Assessment of the Carbon Emissions of MLE process and Denitrification Process Using Granular Sulfur)

  • 문진영;황용우
    • 상하수도학회지
    • /
    • 제26권5호
    • /
    • pp.619-627
    • /
    • 2012
  • In order to determine reduction of greenhouse gas emissions (GHGs) when the submerged membrane bioreactor with granular sulfur (MBR-GS) is used in wastewater treatment plant (WTP), the amount of GHGs was compared and analyzed in the advanced treatment process of P wastewater treatment plant (WTP). The amount of GHGs was estimated by classifying as construction and operation phase in WTP. The amount of GHGs in construction phase was evaluated from multiplying raw materials by using carbon emission factors. Also the amount of GHGs in operating phase was calculated by using total electricity consumption and carbon emission factor. The construction of anoxic tank and secondary settling tank is unnecessary, because the MBR-GS conducts simultaneously the nitrification and denitrification in aeration tank and filtration by hollow fiber membrane. The amount of $CO_2$, $CH_4$, and $N_2O$ emitted by constructing the MBR-GS was 6.44E+06 kg, 8.16E+03 kg and 1.38E+01 kg, respectively. The result shows that the GHGs was reduced about 47 % as compared with the construction in the MLE process. In operating the MBR-GS, the electricity is not required in the biological reactor and secondary setting tank. Thus, the amount of $CO_2$, $CH_4$, and $N_2O$ emitted by operating in the MBR-GS was 7.39E+05 kg/yr, 5.80E+02 kg/yr and 2.44E+00 kg/yr, respectively. The result shows that the GHGs were reduced about 37 % as compared with the operation in the MLE process. Also, $LCCO_2$(Life Cycle $CO_2$) was compared and analyzed between MLE process and MBR-GS. The amount of $LCCO_2 $emitted from the MLE process and MBR-GS was 3.56E+04 ton $CO_2$ and 2.12E+04 ton $CO_2$, respectively. The result shows that the GHGs in MBR-GS were reduced to about 40 % as compared in the MLE process during life cycle. As a result, sulfur-utilizing autotrophic denitrification process (SADP) is expected to be utilized as the cost-effective advanced treatment process, owing to not only high nitrogen removal efficiency but also the GHGs reduction in construction and operation stage.

폐색으로 인한 부직포의 투수능 저하 현상 (Permeability Reduction of Geotextile Filters Induced by Clogging)

  • 이인모;김주현
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.481-488
    • /
    • 2000
  • The mechanism of soil-geotextile system has been studied among researchers since the application of geotextile as a replacement of graded granular filters is rapidly growing. The interaction of soils with geotextile is rather complicated so that its design criteria are mostly based on empiricism. Hence, it is essential to study the characteristics of fine particles transport into geotextile induced by the groundwater flow In this study, the permeability reduction in the soil-filter system due to clogging phenomenon is evaluated. An extensive research program is performed using two typical weathered residual soils which are sampled at Shinnae-dong and Poi-dong area in Seoul. Two separate simulation tests with weathered residual soil are peformed: the one is the filtration test(cross-plane flow test): and the other is the drainage test(in-plane flow test). Needle punched non-woven geotextiles are selected since it is often used as a drainage material in the field. The compatibility of the soil-filter system is investigated with emphasis on the clogging phenomenon. The hydraulic behaviour of the soil-filter system is evaluated by changing several testing conditions.

  • PDF

Pretreatment in Reverse Osmosis Seawater Desalination: A Short Review

  • Valavala, Ramesh;Sohn, Jin-Sik;Han, Ji-Hee;Her, Nam-Guk;Yoon, Yeo-Min
    • Environmental Engineering Research
    • /
    • 제16권4호
    • /
    • pp.205-212
    • /
    • 2011
  • Reverse osmosis (RO) technology has developed over the past 40 years to control a 44% market share in the world desalting production capacity and an 80% share in the total number of desalination plants installed worldwide. The application of conventional and low-pressure membrane pretreatment processes to seawater RO (SWRO) desalination has undergone accelerated development over the past decade. Reliable pretreatment techniques are required for the successful operation of SWRO processes, since a major issue is membrane fouling associated with particulate matter/colloids, organic/inorganic compounds, and biological growth. While conventional pretreatment processes such as coagulation and granular media filtration have been widely used for SWRO, there has been an increased tendency toward the use of ultrafiltration/microfiltration (UF/MF) instead of conventional treatment techniques. The literature shows that both the conventional and the UF/MF membrane pretreatment processes have different advantages and disadvantages. This review suggests that, depending on the feed water quality conditions, the suitable integration of multiple pretreatment processes may be considered valid since this would utilize the benefits of each separate pretreatment.

오존, 오존/과산화수소와 오존/활성탄 처리에 의한 페놀 및 그 부산물의 제거에 관한 연구 (A Study on Removal of Phenol and Its By-Product by Ozone, Ozone/Hydrogen Peroxide and Ozone/Granular Activated Carbon)

  • 배현주;김영규;정문호
    • 한국환경보건학회지
    • /
    • 제23권3호
    • /
    • pp.121-129
    • /
    • 1997
  • This study was performed to delineate the removal phenol in solutions using of ozone, ozone/$H_2O_2$ and ozone/GAC. The disinfection by-product of phenol by ozonation, hydroquinone, was analyzed and it's control process was investigated. The followings are the conclusions that were derived from this study. 1. The removal efficiency of phenol by ozonation was 58.37%, 48.34%, 42.15%, and 35.41% which the initial concentration of phenol was 5 mg/l, 10 mg/l, 15 mg/l, and 20 mg/l, respectively. 2. The removal efficiency of phenol by ozonation was 42.95% at pH 4.0 and 69.39% at pH 10, respectively. The removal efficiencies were gradually increased, as pH values were increased. 3. With the ozone/$H_2O_2$ combined system, the removal efficiency of phenol was 72.87%. It showed a more complete degradation of phenol with ozone/$H_2O_2$ compared with ozone alone. 4. When ozonation was followed by filtration on GAC, phenol was completely removed. 5. Oxidation, if carried to completion, truly destroys the organic compounds, converting them to carbon dioxide. Unless reaction completely processed, disinfection by-products would be produced. To remove them, ozone/GAC treatment was used. The results showed that disinfection by-product of phenol by ozonation, hydroquinone, was completely removed. These results suggested that ozone/GAC should also be an appropriate way to remove phenol and its by-product.

  • PDF

합성섬유 충진 여과수로를 이용한 건설사업장의 흙탕물 처리 및 배수구 보호에 관한 실험적 연구 (Experimental Study on Synthetic Fiber Filled Channel for Treating Turbid Water at the Construction Sites and Protecting Drain System)

  • 원경과;청징;박기수;김영철
    • 한국물환경학회지
    • /
    • 제32권6호
    • /
    • pp.537-545
    • /
    • 2016
  • In order to cope with the new and strict government regulations for turbid water discharge from construction sites, this study tested whether synthetic fiber filters can replace conventional best management practices. The filter efficiency was about 10 to 60% with a varying filter depth of 5 to 15cm, presuming extreme storm flow conditions to be in the range of 800 to 1500m/day of filtration rates. Fiber filter acts exactly like a granular filter, i.e. the separation efficiency is directly and inversely proportional to filter depth and rate, respectively. Based on the operational data, we suggested the Log-Log design relationship, which can be used to determine the filter depth and area. Compared to the widely used gravel filter which treats the turbid water at the construction site, about 20% higher efficiency was obtained under similar operating conditions. Cleaning the filter through a simple hand-washing method at the time of break-through, achieved about 90% soil recovery.

Utilization of aerobic granulation to mitigate membrane fouling in MBRs

  • Iorhemen, Oliver T.;Hamza, Rania A.;Tay, Joo Hwa
    • Membrane and Water Treatment
    • /
    • 제8권5호
    • /
    • pp.395-409
    • /
    • 2017
  • Membrane bioreactor (MBR) is a compact and efficient wastewater treatment and reclamation technology; but, it is limited by membrane fouling. The control of membrane fouling significantly increases operational and maintenance costs. Bacteria and their byproducts - extracellular polymeric substances (EPS) - are major contributors to membrane fouling in MBRs. A recent attempt at fouling mitigation is the development of aerobic granular sludge membrane bioreactor (AGMBR) through the integration of a novel biotechnology - aerobic granulation - and MBR. This paper provides an overview on the development of AGMBR to mitigate membrane fouling caused by bacteria and EPS. In AGMBR, EPS are used up in granule formation; and, the rigid structure of granules provides a surface for bacteria to attach to rather than the membrane surface. Preliminary research on AGMBR using synthetic wastewater show remarkable membrane fouling reduction compared to conventional MBR, thus improved membrane filtration. Enhanced performance in AGMBR using actual municipal wastewater at pilot-scale has also been reported. Therefore, further research is needed to determine AGMBR optimal operational conditions to enhance granule stability in long-term operations and in full-scale applications.

물속의 방사성핵종(세슘) 제거율 연구 (Study on Removal of Cesium in Water Treatment System)

  • 정관조;손보영;안치화;이수원;안재찬;김복순;정득모
    • 대한환경공학회지
    • /
    • 제38권1호
    • /
    • pp.8-13
    • /
    • 2016
  • 본 연구에서는 물속에 존재하는 방사성 세슘($Cs^+$)의 정수처리 제거방법을 고찰하였다. 세슘은 물속에서 대부분 이온상태인 $Cs^+$로 존재하여 모래여과, 정수약품(PACl), 분말활성탄(PAC) 및 정수약품(PACl + PAC) 혼합주입에 의해 제거되지 않았으나 탁도가 증가함에 따라 세슘 제거율이 증가하는 것으로 나타났다. G-취수장 주변 고형물과 황토를 이용하여 탁도를 각각 74 NTU와 103 NTU로 조정했을 때 세슘의 제거율은 각각 약 56%, 51%이었으며 상징수를 GAC로 여과한 경우, 세슘의 약 80%가 제거되었다. 따라서 효과적인 세슘 제거를 위해서는 황토 등을 이용하여 원수 탁도를 80 NTU 이상 조정해야 하는 것으로 나타났다. GAC에 의한 세슘 제거의 경우, 약 60%가 제거됨을 알 수 있었으며 이것은 접촉에 따른 흡착에 의해 제거된 것으로 판단된다. 막에 의한 세슘 제거에 있어서 정밀여과막으로는 제거되지 않았으나 역삼투막에서는 75%가 제거되었다.