• 제목/요약/키워드: granular filtration

검색결과 57건 처리시간 0.018초

Network 모델을 이용한 입상여과공정의 전이상태 해석에 대한 연구 (A Study on the Transient State of Deep Bed Filtration by the Network Model)

  • 주창업
    • 청정기술
    • /
    • 제12권4호
    • /
    • pp.224-231
    • /
    • 2006
  • 현탁액중의 부유입자를 제거하는 입상여과공정을 Network 모델을 이용하여 여과효율과 압력손실에 대해 예측하였다. 구형 여재로 구성되어 있는 여재 층을 node와 원통형 bond로 구성된 network로 가정하였으며 여과 공정을 통해 부유입자는 bond 표면에 포집된다. 원통형 bond에서의 여과효율은 bond의 세공부피를 단위 cell의 유체 막 부피로 가정하여 입자의 경로 분석을 이용하여 구하였으며, 포집된 부유입자가 추가적인 여재로서의 역할은 bond 세공이 좁아짐에 따른 효율 증가로 나타내었다. 또한 세공이 좁아짐에 따른 압력손실도 예측하였다. 본 network 모델의 세공 분포를 부여하는 과정의 stochastic한 성질로 인하여 많은 전산모사가 필요하지만, 본 모델을 이용하여 여과효율과 압력손실을 동시에 예측할 수 있었다.

  • PDF

Seasonal variation of assimilable organic carbon and its impact to the biostability of drinking water

  • Choi, Yonkyu;Park, Hyeon;Lee, Manho;Lee, Gun-Soo;Choi, Young-june
    • Environmental Engineering Research
    • /
    • 제24권3호
    • /
    • pp.501-512
    • /
    • 2019
  • The seasonal effects on the biostability of drinking water were investigated by comparing the seasonal variation of assimilable organic carbon (AOC) in full-scale water treatment process and adsorption of AOC by three filling materials in lab-scale column test. In full-scale, pre-chlorination and ozonation significantly increase $AOC_{P17\;(Pseudomonas\;fluorescens\;P17)}$ and $AOC_{NOX\;(Aquaspirillum\;sp.\;NOX)}$, respectively. AOC formation by oxidation could increase with temperature, but the increased AOC could affect the biostability of the following processes more significantly in winter than in warm seasons due to the low biodegradation in the pipes and the processes at low temperature. $AOC_{P17}$ was mainly removed by coagulation-sedimentation process, especially in cold season. Rapid filtration could effectively remove AOC only during warm seasons by primarily biodegradation, but biological activated carbon filtration could remove AOC in all seasons by biodegradation during warm season and by adsorption and bio-regeneration during cold season. The adsorption by granular activated carbon and anthracite showed inverse relationship with water temperature. The advanced treatment can contribute to enhance the biostability in the distribution system by reducing AOC formation potential and helping to maintain stable residual chlorine after post-chlorination.

황 충진 MBR을 이용한 도금폐수의 고효율 생물학적 질소 제거 (High-Rate Biological Nitrogen Removal from Plating Wastewater using Submerged MBR Packed with Granular Sulfur)

  • 김대영;문진영;백진욱;황용우
    • 상하수도학회지
    • /
    • 제19권2호
    • /
    • pp.200-208
    • /
    • 2005
  • In this study, a new submerged membrane bioreactor process packed with granular sulfur (MBR-GS) was operated to identify the biological nitrogen removal behaviors with plating wastewater containing high-strength $NO_3{^-}$ concentration. The continuous denitrification was carried out at $20^{\circ}C$ with various nitrogen loading rates using synthetic wastewater, which composed of $NO_3{^-}$ and $HCO_3{^-}$, but also actual plating wastewater, which was collected from the effluent of the H metal plating company. As a result, high-rate denitrification in the range of $0.8kg\;NO_3{^-}-N/m^3\;day$ was accomplished at nitrogen loading rate of $0.9kg\;NO_3{^-}-N/m^3\;day$ using synthetic wastewater. Also, higher-rate denitrification with actual plating wastewater was achieved up to $0.91kg\;NO_3{^-}-N/m^3\;day$ at the loading rate of $1.11kg\;NO_3{^-}-N/m^3\;day$. Additionally, continuous filtration was possible during up to 30 days without chemical cleaning in the range of 20 cmHg of transmembrane pressure. On the basis of the proposed stoichiometry, ${SO_4}^{2-}$ production could be estimated efficiently, while observed alkalinity consumption was somewhat lower than theoretical value. Consequently, a new process, MBR-GS is capable of high-rate autotrophic denitrification by compulsive flux and expected to be utilized as an alternative of renovation techniques for nitrogen removal from not only plating wastewater but also municipal wastewater with low C/N ratio.

입자상물질과 VOCs 동시제거 실증장치에서 자동차 페인트 부스 발생 paint aerosol과 VOCs의 동시제거 성능 특성 (Performance characteristics of simultaneous removal equipment for paint particulate matter and VOCs generated from a spraying paint booth)

  • 이재랑;;전성민;이강산;김광득;박영옥
    • 한국입자에어로졸학회지
    • /
    • 제12권4호
    • /
    • pp.161-168
    • /
    • 2016
  • The purpose of this study is to determine the performance characteristics of the paint particulate and volatile organic compounds(VOCs) simultaneous removal from the spraying paint booth in the laboratory and real site by sticky paint particulate and VOCs simultaneous removal demonstration unit. The sticky paint particulate and VOCs simultaneous removal unit is composed of the horizontal type pleated filter modules and the zig-zag type granular activated carbon packing modules. The test conditions at the laboratory are $50.15g/m^3$ of average paint aerosol concentration and 300 ppm of VOCs concentration which were same as the working conditions of spraying paint booth in the real site. But, the demonstration conditions at the real site are varied according to the working condition of spraying paint booth for the kind of passenger car bodies. The test results at the laboratory obtained that 99% of total particulate collection efficiency at 0.62 m/min of filtration velocity and 84% at 1.77 m/min of filtration velocity. The VOCs removal efficiencies are 97% at $3500hr^{-1}$ of gas hour space velocity and 59% at $10,000hr^{-1}$ of gas hour space velocity. In the real site test, the average removal efficiency of PM10 was measured to be 99.65%, the average removal efficiency of PM2.5 was 99.38%, the average removal efficiency of PM1 was 98.52%, and the average removal efficiency of VOCs was 89%.

Manganese treatment to reduce black water occurrence in the water supply

  • Kim, Jinkeun
    • Environmental Engineering Research
    • /
    • 제20권3호
    • /
    • pp.230-236
    • /
    • 2015
  • 26 multi-regional water treatment plants (WTPs) were investigated, to determine the characteristics of manganese (Mn) concentration and removal in Korea. Mn concentrations of raw water in most WTPs were higher than the drinking water standard (i.e., 0.05 mg/L); thus, proper removal of Mn at the WTPs is needed. Mn concentration was generally higher in lakes than rivers due to seasonal lake turnovers. The Mn concentrations of treated water at 26 WTPs in 2012 were less than 0.05 mg/L, due to strict law enforcement and water treatment processes optimization. However, before 2010, those concentrations were more than 0.05 mg/L, which could have led to an accumulation of Mn oxides in the distribution system. This could be one of the main reasons for black water occurrence. Therefore, regular monitoring of Mn concentration in the distribution system, flushing, and proper Mn removal at WTPs are needed, to supply clean and palatable tap water.

역삼투식 해수담수화의 전처리공정으로서 유분 제거의 평가 (Evaluation of Oil Pollutants Removal in Seawater as Pretreatment Process for Reverse Osmosis Desalination Process)

  • 김우항
    • 해양환경안전학회:학술대회논문집
    • /
    • 해양환경안전학회 2003년도 춘계학술발표회
    • /
    • pp.205-209
    • /
    • 2003
  • The various pretreatment processes were evaluated for removal of oil pollutants with weathered oil contaminated seawater in a reverse osmosis desalination process. Weathered oil contaminated seawater was made by biodegradation and photooxidation with oil containing seawater. Coagulation, ultrafiltration, advanced oxidation processes and granular activated carbon filtration was used with pretreatment for dissolved organic carbon. Crude oil was removed but. weathered oil contaminated seawater was not removed by biodegradation and coagulation. DOC and E260 was removed with about 20 % and 40 % by membrane filter of cut off molecular weight 500. So, the most of dissolved organic carbon in weathered oil contaminated seawater was revealed that molecular weight was lower than 500. It is difficult to remove DOC in weathered oil contaminated seawater by advanced oxidation processes treatment, but, E260 was removed more high. However, DOC in weathered oil contaminated seawater was easily adsorbed to GAC. It is revealed that DOC was removed by adsorption.

  • PDF

다중수원 수처리 의사결정에 관한 실험적 연구 (An experimental study on decision making for multi-source water)

  • 정정우;조형락;이상호;채수권
    • 상하수도학회지
    • /
    • 제29권1호
    • /
    • pp.1-9
    • /
    • 2015
  • A combined treatment system using multiple source water is becoming important as an alternative to conventional water supply for small-scale water systems. In this research, combined water treatment systems were investigated for simultaneous use of multi-source water including rainwater, ground water, river water, and reclaimed wastewater. A laboratory-scale system was developed to systematically compare various combinations of water treatment processes, including sand filtration, microfiltration (MF), granular activated carbon (GAC), and nanofiltration (NF). Results showed that the efficiency of combined water treatment systems was affected by the quality of feed waters. In addition, a simply approach based on the concept of linear combination was suggested to support a decision-making for the optimum water treatment systems with the consideration of final water quality.

오존발생기를 이용한 고도정수처리기술 동향 및 전망 (The Trend and Prospect of Advanced Water Treatment Process using Ozonizer)

  • 조국희;김영배;서길수;이형호;이광식;송현직;이상근
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 1998년도 학술발표회논문집
    • /
    • pp.242-244
    • /
    • 1998
  • Over the years manufactures have become increasingly aware of the importance of water purity and its effect on the quality of the final product. One of the largest problems that confronts pure water system operators is bacterial recontamination shortly after the water purification equipment. There are several recommended methods of either preventing or recommended methods of either preventing or removing such contamination but most have inherent disadvantages. Drinking water has required new treatment techniques such as ozonation and granular activated carbon(GAC) filtration. Ozone is known to be a powerful oxidant and disinfectant. Therefore it has been found to be necessary for the treatment of taste, odor and color as an oxidant of inorganic and organic compounds.

  • PDF

Effect of Organic Materials in Water Treatment by Hybrid Module of Multi-channel Ceramic Microfiltration and Activated Carbon Adsorption

  • Park, Jin-Yong;Lee, Sang-Min
    • Korean Membrane Journal
    • /
    • 제11권1호
    • /
    • pp.21-28
    • /
    • 2009
  • We investigated the effect of organic materials on membrane fouling in advanced drinking water treatment by a hybrid module packed with granular activated carbon (GAC) outside multi-channel ceramic microfiltration membrane. Synthetic water was prepared with humic acid and kaolin to simulate natural water resouces consisting of natural organic matter and inorganic particles. Kaolin concentration was fixed at 30 mg/L and humic acid was changed as 2~10 mg/L to inspect the effect of organic matters. Periodic back-flushing using permeate water was performed for 10 sec per filtration of 10 min. As a result, both resistance of membrane fouling (Rf) and permeate flux (J) were influenced highly by concentration of humic acid. It proved that NOM like humic acid could be an important factor on membrane fouling in drinking water treatment. Turbidity and UV254 absorbance were removed up to above 97.4% and 59.2% respectively.

Experimental Study on the Performance of Cyclone with Granules in the Cone

  • R. B. Xiang;C. H. Jung;Kim, D. S.;Lee, K. W.
    • 한국대기환경학회:학술대회논문집
    • /
    • 한국대기환경학회 2003년도 추계학술대회 논문집
    • /
    • pp.390-391
    • /
    • 2003
  • Cyclone is one of the most widely used gas - solid separation devices in industries. In spite of its many advantages, lower separation efficiency and flat separation curve are usually associated with cyclones. Therefore, the primary goal of cyclone research is to improve its separation capability while retaining its basic features. In this study, granules were filled in the cone of a cyclone in an attempt to increase the cyclone separation efficiency through the combination of granular filtration and centrifugal separation. (omitted)

  • PDF