• Title/Summary/Keyword: granitic hills

Search Result 12, Processing Time 0.023 seconds

Weathering Characteristics of Granitic Grus in Naesung Stream Drainage, Yeongju-Bonghwa Basin, Korean Peninsula (내성천 유역분지인 영주-봉화 분지 화강암 구릉대의 풍화 특색)

  • Kim, Youngrae;Kee, Keundo
    • Journal of The Geomorphological Association of Korea
    • /
    • v.21 no.4
    • /
    • pp.97-108
    • /
    • 2014
  • Naesung stream famous for 'sandy river', a tributary to the Nakdong River, flows through Yeongju-Bonghwa Basin, its drainage. If the dismantlement of granitic hills in basin is in final stage, weathering materials from hills into stream are finer materials like silty or sandy loam than coarse sand, because sand as weathering mantles is provided from granitic hills, in general. So the granitic hills in Yeongju-Bonghwa basin is dissecting present. As a results of the CIA analysis(A-CN-K and A-CNK-FM ternary diagram), chemical weathering of granitic grus in Yeongju-Bonghwa basin is too very weak for calcium and sodium to be dissolved and go as far as to be more weak than that of Jeongeup, Nonsan and Namwon, common granitic grus in Korean Peninsula. Therefore, the chemical characteristics of granitic hills in Yeongju-Bonghwa basin show that the alteration of weathering mantles just finished disintegration and is dissected at a standstill. Plenty of sands provided from granitic hills is filling the channel of Naesung stream.

Weathering Characteristics of Granitic Hills Developed in Eastern Jincheon Basin, Korea (충북 진천분지 북동부에 발달한 화강암 풍화층의 풍화 특색)

  • Kim, Young-Rae
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.3
    • /
    • pp.1-11
    • /
    • 2020
  • A CIA analysis (A-CN-K and A-CNK-FM ternary diagram) indicates that, unlike the general granitic hills of the Korean Peninsula, the chemical weathering of the granitic grus (sandy regolith) in the eastern Jincheon basin is variable in geomorphic site except the Chuncheon basin. In the study area, there are three types of hills, such as; inner hills, linear isolated hills, and outer hills. The weathered mantles of the outer hills and linear isolated hills are weakly altered, whereas the inner hill, the Bonghyeon profile, shows a stronger chemical loss of the compositions approximating saprolite. There are small differences between the outer hills and linear isolated hills. The Geumwang site is considered fresh rock due to a low lever of alteration, although its sampling profile shows sandy weathering mantles. In the profiles of the Masan and Mugeuks sites, the lower part of weathering mantles has not experienced a significant level of component loss, but the upper regoliths have substantially been modified. The alteration of the hills occurs by chemical loss of CaO and Na2O. K2O exhibited little variation at all sampling suites and it has not changed into saprolite.

Chemical Weathering Characteristics and CIA of Granitic Grus Developed in Geochang and Gajo Basin, Korea (거창 분지와 가조 분지에 발달한 화강암 사질 풍화층의 화학적 풍화 양상 - CIA분석을 중심으로)

  • Kim, Young-Rae;Kee, Keun-Doh
    • Journal of The Geomorphological Association of Korea
    • /
    • v.24 no.2
    • /
    • pp.41-49
    • /
    • 2017
  • From the results of the CIA analysis (A-CN-K and A-CNK-FM ternary diagram), we concluded that granitic grus experienced low chemical alteration and contains plenty of sandy material The chemical alteration of Geochang and Gajo Basin advanced further than that of Yeongju-Bonghwa basin, but does not come to spatial differentiation as Chuncheon Basin. The weathered mantles of inner hills in the basin exhibit very weak alteration, and there is little spatial differentiation of chemical alteration between footslope of mountains, footslope hills. Most of hills are still in incipient weathering stage and have plenty of sandy materials. Therefore the chemical characteristics of granitic hills in Geochang and Gajo basin show that granitic weathered mantles are not saprolite formed by alteration but may be just grus (sandy weathered mantles).

Chemical Weathering Characteristics and CIA of Granitic Grus developed in Chuncheon Basin, Korea (강원도 춘천 분지에 발달한 비적색 화강암 풍화층의 화학적 풍화 특색 - CIA분석을 중심으로 -)

  • Kim, Young-Rae;Kee, Keun-Do
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.2
    • /
    • pp.71-81
    • /
    • 2016
  • According to the result obtained by the CIA analysis(A-CN-K and A-CNK-FM ternary diagram), the chemical weathering of granitic grus in Chuncheon basin is too weak, thus calcium and sodium may not be dissolved sufficiently, but go as far as to be more progress than that of Yeongju-Bonghwa basin, Jeongeup, Nonsan and Namwon, common granitic grus in Korean Peninsula. Therefore the chemical characteristics of granitic hills in Chuncheon basin show that granitic weathered mantles are not saprolite formed by alteration while this may be true for guns(sandy weathered mantles). The weathered mantles of inner hills in the basin is slightly altered, footslope of mountains are more altered, and footslope hills are undergone some alteration. But their alteration doesn't show any advances to saprolite, and most of them are still in incipient weathering stage.

Morphology and Ecological Milieu of Keum-gae River basin in Andong Province (안동 금계천 유역의 지형과 생태 환경)

  • KEE, Keun-Doh
    • Journal of The Geomorphological Association of Korea
    • /
    • v.17 no.4
    • /
    • pp.99-110
    • /
    • 2010
  • This study elucidates the interrelationship between climatic, morpological, and hydraulic milieu in the drainage basins of Keum-gae river from the viewpoint of ecogeography. The region of this basin is located at low-relief hills. Because hills are made up of granitic regolith by deep weathering, the rate of permeability is very high. And, the speed of drainage is very fast, and the deficit of water easily revealed and BOD is very high. Therefore a great deals of efforts are needed for the maintenance of stable milieu.

Geomorphological Environment of Suwon Basin (수원 분지의 지형 환경)

  • Kee, Keun-Doh;Lee, Sang-Whan
    • Journal of the Korean association of regional geographers
    • /
    • v.10 no.2
    • /
    • pp.300-312
    • /
    • 2004
  • The geomorphological environment of Suwon Basin consists of two great elements: mountains which surround the basin and plains and low relief hills by differential erosion of granitic area. Nothern and eastern parts of the basin surround with gneissic mountains(Mt. Kwangkyo), southern and western parts of the basin with granitic mountains(Mt. Chilbo, etc). The basin developed on granitic saprolites is composed of two types of sub-order geomorphic elements: flood plains alongside four river(Whangkuji-chon, Seoho-chon, Suwon-chon, Wonchonri-chon) and aligned hills and mounts between the river side plains. While the low down lands provided the spatial condition for the extention of downtown of Suwon, the gneissic mountains have played the positive roles by high ecological dam effects with stable supply of water and purification of air, etc.

  • PDF

Geomorphological Characteristics of the Miho Stream Flowing through a Granitic Plain, South Korea (화강암 분지를 흐르는 미호천의 지형학적 특색)

  • Kim, Young Rae
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.3
    • /
    • pp.1-11
    • /
    • 2021
  • The drainage area of the Miho stream is composed of granitic basins, gneissic and sedimentary mountains. 80 percent of the Miho stream flows through the Jincheon basin and the Cheongju inner-plain within the Daebo granite belt. Because the deep weathering of granitic hills provides a large amount of sands to the streams, there are wide floodplains with thick alluvium developed in the basin and plain. The thickness of the alluvium is 5~10m and the width of the floodplains is 2~2.5km. In the basin outlet area where a stream passes through the mountain canyon, wide floodplains and deep alluvium are developed in other riverside. The Miho stream is a sand-gravel channel flowing through the Cheongju inner-plain with wide floodplains and deep alluvium formed by deep weathering of granite.

Chemical Weathering Characteristics of Red Saprolites at Granitic Hills in Yeongam, Southwestern Korea (한반도 남서부 영암의 화강암 구릉대 적색토의 화학적 풍화 특색)

  • Kim, Young-Rae
    • Journal of the Korean Geographical Society
    • /
    • v.47 no.3
    • /
    • pp.315-327
    • /
    • 2012
  • Red saprolites are appeared in granitic hills in Yeongam, Southern Korean Peninsula. These red saprolites were analyzed for their geochemistry, including CIA, A-CN-K and A-CNK-FM ternary plots, to understand the chemical weathering trend and rubefaction of the saprolites. These saprolites were compared with laterite profiles in Cameroon formed under humid tropical conditions. The red saprolites in Yeongam show commonly massive loss of CaO, $Na_2O$, but $K_2O$ is being slow. The red saprolites in Yeongam relative to laterite and kaolinite profiles of Cameroon and Spain show weak chemical alteration owing to slow removal of $K_2O$, but high mafic constituents, $Fe_2O_3$ and MgO, for most of the samples. In the saprolites of Yeongam, mafic oxides become enriched because of the fast and massive removal of alkali constituents, such as CaO, $Na_2O$ and $K_2O$, relative to other elements, resulting in rubefaction of the saprolites. It is found that the rubefaction of the saprolites is not necessarily proportional to chemical weathering intensity.

  • PDF

Chemical Weathering Trend and Rubefaction of Granitic Hills in Naju, Southern Korea (한반도 남서부 나주 일대 화강암 구릉대의 적색화와 화학적 풍화 경향)

  • Kim, Young Rae
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.1
    • /
    • pp.57-68
    • /
    • 2012
  • Red saprolites are appeared in granitic hills in Naju, Southern Korean Peninsula. These red saprolites were analyzed for their geochemistry, including CIA, A-CN-K and A-CNK-FM ternary plots, to understand the chemical weathering trend and rubefaction of the saprolites. These saprolites were compared with kaolinitic saprolites of Guadalquivir Basin in Spain formed under paleo-humid tropical conditions. Chemical Index of Alteration(CIA) value for Naju in Korea is 80, and 87 in Guadalquivir, suggesting moderate and strong weathering in both. Relative to kaolinitic saprolite of Guadalquivir in Spain, red saprolites in Naju are commonly weak loss of CaO, $Na_2O$, especially in $K_2O$. The A-CNK-FM ternary plots of Naju saprolites relative to Kaolinitic saprolites of Guadalquivir shows weak chemical alteration owing to slow removal of $K_2O$, but high mafic constituents, $Fe_2O_3$ and MgO, for most of the samples. In the saprolites of Naju, mafic oxides, $Fe_2O_3$ and MgO, become enriched because of the fast and massive removal of CaO, $Na_2O$ and $K_2O$ relative to other elements, resulting in rubefaction of the surface layer of the saprolites, so more redness than kaolinitic saprolites of Guadalquivir. It is found that the rubefaction of the saprolites is not necessarily proportional to chemical weathering intensity.

Chemical Weathering Trend of Granitic Rock in Hwangtohyun, Korea (한반도 서부 황토현 일대 적색토의 화학적 풍화 경향)

  • Kim, Young-Rae
    • Journal of the Korean association of regional geographers
    • /
    • v.18 no.1
    • /
    • pp.17-26
    • /
    • 2012
  • In Hwangtohyun, meaning 'red soil pass', reddish surface mantles is widespread. Other granitic hills, exceptionally Naju and Youngam area, in Korean peninsula don't commonly have that color. This paper attempts to address this issue by CIA(chemical index of alteration). CIA data and A-CN-K diagram provide crucial insights into the changes in the relative contributions of chemical physical weathering in difference of grus regolith and saprolite. CaO and $Na_2O$ show strong depletion and $K_2O$ is progressive loss. In grus regolith, weathering trends are (sub)parallel to the CN-A join of the A-CN-K diagram, but the sample's composition plot ever closer to the A-K join in saprolite. The difference of weathering trend obtained using CIA data corresponds closely with the visual interpretation of soil color and texture.

  • PDF