• Title/Summary/Keyword: gram-negative pathogens

Search Result 189, Processing Time 0.026 seconds

Analysis of lipopolysaccharides of Pasteurella multocida and several Gram-negative bacteria by gas chromatography on a capillary column (Gas chromatography의 capillary column을 이용한 Pasteurella multocida 및 기타 그람음성 세균의 lipopolysaccharide 분석)

  • Ryu, Hyo-ik;Kim, Chul-joong
    • Korean Journal of Veterinary Research
    • /
    • v.40 no.1
    • /
    • pp.72-80
    • /
    • 2000
  • Lipopolysaccharides (LPS) of Pasteurella multocida (P multocida) and several Gram-negative bacterial pathogens were analyzed by methanolysis, trifluoroacetylation and gas chromatography (GC) on a fused-silica capillary column. The GC analysis indicated that LPS prepared from a strain of P multocida by phenol-water (PW) or trichloroacetic acid (TCA) extraction were quite different in chemical composition. However, LPS prepared from Salmonella enteritidis by the two extraction methods were very similar. PW-LPS extracts from different Pasteurella strains of a serotype had essentially identical GC patterns. Endotoxic LPS extracted from 16 different serotypes of P multocida by PW or by phenol-chloroform-petroleum ether procedures yielded chromatograms indicating similar composition of the fatty acid moieties but minor differences in carbohydrate content. When the chemical composition of endotoxic LPS extracted from several Gram-negative bacteria (P multocida, Pasteurella hacmolytica, Haemophilus somnus, Actinobacillus ligniersii, Brucella abortus, Treponema hyodysenteriae, Escherichia coli, Bacteriodes fragilis, Salmonella abortus equi and Salmonella enteritidis) were examined, each bacteria showed a unique GC pattern. The carbohydrate constituents in LPS of various Gram-negative bacteria were quite variable not only in the O-specific polysaccharides but also in the core polysaccharides. The LPS of closely related bacteria shared more fatty acid constituents with each other than with unrelated bacteria.

  • PDF

Positive and negative regulation of the Drosophila immune response

  • Aggarwal, Kamna;Silverman, Neal
    • BMB Reports
    • /
    • v.41 no.4
    • /
    • pp.267-277
    • /
    • 2008
  • Insects mount a robust innate immune response against a wide array of microbial pathogens. The hallmark of the Drosophila humoral immune response is the rapid production of anti-microbial peptides in the fat body and their release into the circulation. Two recognition and signaling cascades regulate expression of these antimicrobial peptide genes. The Toll pathway is activated by fungal and many Gram-positive bacterial infections, whereas the immune deficiency (IMD) pathway responds to Gram-negative bacteria. Recent work has shown that the intensity and duration of the Drosophila immune response is tightly regulated. As in mammals, hyperactivated immune responses are detrimental, and the proper down-modulation of immunity is critical for protective immunity and health. In order to keep the immune response properly modulated, the Toll and IMD pathways are controlled at multiple levels by a series of negative regulators. In this review, we focus on recent advances identifying and characterizing the negative regulators of these pathways.

Clinical features and prognostic factors of early-onset sepsis: a 7.5-year experience in one neonatal intensive care unit

  • Kim, Se Jin;Kim, Ga Eun;Park, Jae Hyun;Lee, Sang Lak;Kim, Chun Soo
    • Clinical and Experimental Pediatrics
    • /
    • v.62 no.1
    • /
    • pp.36-41
    • /
    • 2019
  • Purpose: In this study, we investigated the clinical features and prognostic factors of early-onset sepsis (EOS) in neonatal intensive care unit (NICU) patients. Methods: A retrospective analysis was conducted on medical records from January 2010 to June 2017 (7.5 years) of a university hospital NICU. Results: There were 45 cases of EOS (1.2%) in 3,862 infants. The most common pathogen responsible for EOS was group B Streptococcus (GBS), implicated in 10 cases (22.2%), followed by Escherichia coli, implicated in 9 cases (20%). The frequency of gram-positive sepsis was higher in term than in preterm infants, whereas the rate of gram-negative infection was higher in preterm than in term infants (P<0.05). The overall mortality was 37.8% (17 of 45), and 47% of deaths occurred within the first 3 days of infection. There were significant differences in terms of gestational age (26.8 weeks vs. 35.1 weeks) and birth weight (957 g vs. 2,520 g) between the death and survival groups. After adjustments based on the difference in gestational age and birth weight between the 2 groups, gram-negative pathogens (odds ratio [OR], 42; 95% confidence interval [CI], 1.4-1,281.8) and some clinical findings, such as neutropenia (OR, 46; 95% CI, 1.3-1,628.7) and decreased activity (OR, 34; 95% CI, 1.8-633.4), were found to be associated with fatality. Conclusion: The common pathogens found to be responsible for EOS in NICU patients are GBS and E. coli. Gram-negative bacterial infections, decreased activity in the early phase of infection, and neutropenia were associated with poor outcomes.

Antibacterial Effects of Extracts of Thuja Orientalis cv Aurea Nana Cones against Food-spoilage and Food-borne Pathogens

  • Yang, Xiao Nan;Hwang, Cher-Won;Kwon, Gi-Seok;Kang, Sun-Chul
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.4
    • /
    • pp.459-465
    • /
    • 2011
  • BACKGROUND: Nowadays, Chemical antiseptics have become great problems for health and environmental, so that developing of new substitutes for chemical antiseptics is more and more important. Natural product is a kind of environment-friendly additive that could be used as antiseptic in food industry. Thuja orientalis cv Aurea Nana is a gymnospermous plant of the family Cupressaceae, native to northwestern China and widely naturalised elsewhere in Korea and Japan. This study was aimed to investigate the antibacterial potential of various organic extracts from T. orientalis cones against some food-borne and food-spoilage bacteria. METHODS AND RESULTS: Hexane extract (HE), chloroform extract (CE), ethyl acetate extract (EAE) and methanol extract (ME) were obtained from female cones of T. orientalis. The antibacterial activities of various extracts were tested by standard agar diffusion and minimum inhibitory concentrations (MICs) against five gram-positive and six gram-negative bacteria. Cell viability and morphology change of L. monocytogenes ATCC 10943 treated with hexane extract were also observed. The various extracts displayed remarkable antibacterial effects against all the gram-positive bacteria but did not show any effect against the gram-negative bacteria. Hexane extract has the highest inhibitory effect on cell viability of L. monocytogenes ATCC 10943. SEM observation also demonstrated the damaging effect of the hexane extract on the morphology of L. monocytogenes ATCC 10943 at the minimum inhibitory concentration. CONCLUSION(s): The tested gram-positive bacteria were significantly inhibited by organic extracts of T. orientalis cone. Hexane extract was the most potent against Listeria monocytogenes ATCC 10943, as evidenced by the lowest MIC level and the complete inhibition of cell viability within shortest exposure time, along with SEM observation.

Antimicrobial Effects Against Food-borne Pathogens of Sanguisorbae Officinalis L. Ethanol Extract (지유 에탄올 추출물의 식품부패균에 대한 항균효과)

  • Choi, Moo Young;Rhim, Tae Jin
    • The Korean Journal of Community Living Science
    • /
    • v.24 no.1
    • /
    • pp.27-36
    • /
    • 2013
  • This study was performed to investigate the antimicrobial effect against food-borne pathogens of Sanguisorbae officinalis L. ethanol extract. The antimicrobial activity of the ethanol extract was determined using a paper disc-diffusion method and the diameter of the clear zone was measured. The diameters of the clear zone in the presence of 10 mg of the ethanol extract were the maximum against Staphylococcus aureus among the tested 4 gram-positive bacteria and Pseudomonas aeruginosa among the tested 7 gram-negative bacteria. Analysis of the minimum inhibition concentrations (MIC) showed that the ethanol extract exhibited a similar efficacy as sorbic acid, well-known chemical preservatives. The growth inhibitory effects of the ethanol extract in the concentrations of 250, 500, 1,000 and 2,000 mg/L on food-borne pathogens were determined against Staphylococcus aureus, Bacillus subtilis, Salmonella Typhimurium and Pseudomonas aeruginosa. The growth of the microorganisms was significantly (p<0.05) inhibited by the ethanol extract in the concentrations higher than 250 mg/L. Thus, the results of the present study demonstrate that the ethanol extract exhibits antimicrobial effects against food-borne pathogens, suggesting that Sanguisorbae officinalis L. could be used as natural antibacterial agent in food.

Comparison of In vitro Anti-Biofilm Activities of Natural Plant Extracts Against Environment Harmful Bacteria (천연물 성분을 이용한 환경 유해미생물의 biofilm 생성 저해능 비교에 관한 연구)

  • Kang, Eun-Jin;Park, Ji Hun;Jin, Seul;Kim, Young-Rok;Do, Hyung-Ki;Yang, Woong-Suk;Lee, Jae-Yong;Hwang, Cher-Won
    • Journal of Environmental Science International
    • /
    • v.28 no.2
    • /
    • pp.225-233
    • /
    • 2019
  • In this study, we investigated the in vitro anti-biofilm activities of plant extracts of chives (Allium tuberosum), garlic (Allium sativum), and radish (Raphanus sativus L.) against environment harmful bacteria (gram-positive Staphylococcus aureus and, gram-negative Salmonella typhimurium and Escherichia coli O157:H7). In the paper disc assay, garlic extracts exhibited the highest anti-biofilm activity. The Minimal Inhibitory Concentration (MIC) of all plant extracts was generally higher for gram-negative bacteria than it was for gram-positive bacteria. Gram-negative bacteria were more resistant to plant extracts. The tetrazolium dye (XTT) assay revealed that, each plant extract exhibited a different anti-biofilm activity at the MIC value depending on the pathogen involved. Among the plant extracts tested, garlic extracts (fresh juice and powder) effectively reduced the metabolic activity of the cells of food-poisoning bacteria in biofilms. These anti-biofilm activities were consistent with the results obtained through light microscopic observation. Though the garlic extract reduced biofilm formation for all pathogens tested, to elucidate whether this reduction was due to antimicrobial effects or anti-biofilm effects, we counted the colony forming units of pathogens in the presence of the garlic extract and a control antimicrobial drug. The garlic extract inhibited the E. coli O157:H7 biofilm effectively compared to the control antimicrobial drug ciprofloxacin; however, it did not inhibit S. aureus biofilm significantly compared to ciprofloxacin. In conclusion, garlic extracts could be used as natural food preservatives to prevent the growth of foodborne pathogens and elongater the shelf life of processed foods.

Sphingolipids and Antimicrobial Peptides: Function and Roles in Atopic Dermatitis

  • Park, Kyungho;Lee, Sinhee;Lee, Yong-Moon
    • Biomolecules & Therapeutics
    • /
    • v.21 no.4
    • /
    • pp.251-257
    • /
    • 2013
  • Inflammatory skin diseases such as atopic dermatitis (AD) and rosacea were complicated by barrier abrogation and deficiency in innate immunity. The first defender of epidermal innate immune response is the antimicrobial peptides (AMPs) that exhibit a broad-spectrum antimicrobial activity against multiple pathogens, including Gram-positive and Gram-negative bacteria, viruses, and fungi. The deficiency of these AMPs in the skin of AD fails to protect our body against virulent pathogen infections. In contrast to AD where there is a suppression of AMPs, rosacea is characterized by overexpression of cathelicidin antimicrobial peptide (CAMP), the products of which result in chronic epidermal inflammation. In this regard, AMP generation that is controlled by a key ceramide metabolite S1P-dependent mechanism could be considered as alternate therapeutic approaches to treat these skin disorders, i.e., Increased S1P levels strongly stimulated the CAMP expression which elevated the antimicrobial activity against multiple pathogens resulting the improved AD patient skin.

Anti-inflammatory and Anti-bacterial Effects of Aloe vera MAP against Multidrug-resistant Bacteria

  • Choi, Sang Hwa;Shin, Hea Soon
    • Natural Product Sciences
    • /
    • v.23 no.4
    • /
    • pp.286-290
    • /
    • 2017
  • Multidrug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa are highly dangerous nosocomial pathogens, cause the symptoms of skin infections, pressure sores, sepsis, blood stream and wound infections. Unfortunately, these pathogens are immune to the most common antibiotics, such as, carbapenem, aminoglycoside and fluoroquinolone. Therefore, it is imperative that new and effective antibiotics be developed. In the present study, the antimicrobial effects of Aloe vera MAP (modified Aloe polysaccharide) on Staphylococcus aureus and Bacillus subtilis, Escherichia coli and Enterobacter aerogenes, and clinical Pseudomonas aeruginosa and clinical Acinetobacter baumannii were comprehensibly investigated. Prior to the growth inhibition effect measurement and antibiotic disc diffusion assay on gram-positive and gram-negative bacteria and selected multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii, antimicrobial resistance screening was performed for the multidrug-resistant bacteria obtained from clinical isolates. The results for showed the Aloe vera MAP had a concentration-dependent effect on all of examined bacteria, particularly on Pseudomonas aeruginosa. Anti-inflammatory and anti-oxidant experiments were also performed dose dependently effects to confirm the beneficial physiological effects of Aloe vera MAP.

Etiological agents isolated from blood in children with hemato-oncologic disease (2002-2005) (소아 혈액 종양 환자에서 발생한 균혈증의 원인균(2002-2005년))

  • Kim, So-Hee;Lee, Young-Ah;Eun, Byung-Wook;Kim, Nam-Hee;Lee, Jin-A;Kang, Hyoung Jin;Choi, Eun-Hwa;Shin, Hee Young;Lee, Hoan-Jong;Ahn, Hyo Seop
    • Clinical and Experimental Pediatrics
    • /
    • v.50 no.1
    • /
    • pp.56-64
    • /
    • 2007
  • Purpose : This study was performed to identify the etiologic agents and antimicrobial susceptibility patterns of organisms responsible for bloodstream infections in pediatric cancer patients for guidance in empiric antimicrobial therapy. Methods : One hundred and ninety-seven episodes of bloodstream infections that developed in 128 pediatric cancer patients were analyzed, which were identified at the Seoul National University Children's Hospital during a 4 year-period from 2002 to 2005. Results : A total of 214 pathogens was isolated, of which 64.0 percent were gram-negative, 31.3 percent were gram-positive bacteria, and 4.7 percent were fungi. The most common pathogens were Klebsiella spp. (21 percent) and Escherichia coli (16.8 percent), and coagulase-negative staphylococci (CNS, 7.9 percent) and viridans streptococci (7.5 percent) emerged as important pathogens. Neutropenic patients were more often associated with gram-negative bacteria than non-neutropenic patients (67.5 percent vs. 51.1%, P=0.018) and patients with central venous catheters were more often associated with CNS and viridans streptococci than those without. Resistance rates of gram-positive bacteria to penicillin, oxacillin and vancomycin were 83.3 percent, 48.5 percent and 0.5 percent, respectively, and those of gram-negative bacteria to cefotaxime, piperacillin/tazobactam, imipenem, gentamicin and amikacin were 24.1 percent, 17.2 percent, 6.6 percent, 21.6 percent, and 14.2 percent, respectively. Gram-negative bacteremias were more often associated with intensive care than gram-positive bacteremias (26.5 percent vs. 10.3 percent, P=0.016), and patients with catheters were more often associated with intensive care (34.4 percent vs. 10.8 percent, P<0.001) and higher fatality rate (16.7 percent vs. 4.8 percent, P=0.012) than those without. Conclusion : This study revealed that gram-negative bacteria are still a dominant organism in bloodstream infections, especially in neutropenic patients, and confirmed that gram-positive bacteria are emerging as important etiological agents in bloodstream infections of pediatric hemato-oncologic patients.

Identification of duck liver-expressed antimicrobial peptide 2 and characterization of its bactericidal activity

  • Hong, Yeojin;Truong, Anh Duc;Lee, Janggeun;Lee, Kyungbaek;Kim, Geun-Bae;Heo, Kang-Nyeong;Lillehoj, Hyun S.;Hong, Yeong Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.7
    • /
    • pp.1052-1061
    • /
    • 2019
  • Objective: This study was conducted to identify duck liver-expressed antimicrobial peptide 2 (LEAP-2) and demonstrate its antimicrobial activity against various pathogens. Methods: Tissue samples were collected from 6 to 8-week-old Pekin ducks (Anas platyrhynchos domesticus), total RNA was extracted, and cDNA was synthesized. To confirm the duck LEAP-2 transcript expression levels, quantitative real-time polymerase chain reaction was conducted. Two kinds of peptides (a linear peptide and a disulfide-type peptide) were synthesized to compare the antimicrobial activity. Then, antimicrobial activity assay and fluorescence microscopic analysis were conducted to demonstrate duck LEAP-2 bactericidal activity. Results: The duck LEAP-2 peptide sequence showed high identity with those of other avian species (>85%), as well as more than 55% of identity with mammalian sequences. LEAP-2 mRNA was highly expressed in the liver with duodenum next, and then followed by lung, spleen, bursa and jejunum and was the lowest in the muscle. Both of LEAP-2 peptides efficiently killed bacteria, although the disulfide-type LEAP-2 showed more powerful bactericidal activity. Also, gram-positive bacteria was more susceptible to duck LEAP-2 than gram-negative bacteria. Using microscopy, we confirmed that LEAP-2 peptides could kill bacteria by disrupting the bacterial cell envelope. Conclusion: Duck LEAP-2 showed its antimicrobial activity against both gram-positive and gram-negative bacteria. Disulfide bonds were important for the powerful killing effect by disrupting the bacterial cell envelope. Therefore, duck LEAP-2 can be used for effective antibiotics alternatives.