• Title/Summary/Keyword: grains sizes

Search Result 120, Processing Time 0.025 seconds

THERMAL PROPERTIES OF SMALL GRAINS WITH FLUCTUATING TEMPERATURE UNDER DIFFUSE INTERSTELLAR RADIATION FIELD

  • Hong, Seung-Soo
    • Journal of The Korean Astronomical Society
    • /
    • v.12 no.1
    • /
    • pp.27-34
    • /
    • 1979
  • Temperature history of very small interstellar dust particles is followed under diffuse interstellar radiation. Because of extremely small thermal capacities of these grains with sizes ranging from a few tens to hundred Angstroms in radii, they are to experience strong fluctuations in temperature whenever they are hit by interstellar ultraviolet photons. Fluctuating temperature can inhibit these smaller component of interstellar dust from growing into core-mantle particles of submicron sizes by continuously evaporating atoms and molecules adsorbed on their surface. This is interpreted as a possible physical reason for the bimodal nature in grain size distribution. A brief discussion is also given to the far infrared emission properties of such small grains in diffuse interstellar dust clouds.

  • PDF

A Comparative Study of Mechanical Property in Al-8Fe-2Mo-2V-1Zr Bulk Alloys Fabricated from an Atomized Powder and a Melt Spun Ribbon

  • Jung, T.K.;Sung, T.J.;Kim, M.S.;Kim, W.Y.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1023-1024
    • /
    • 2006
  • Al-8Fe-2Mo-2V-1Zr alloys were prepared by the gas atomization/hot extrusion and the melt spinning/hot extrusion. For the gas atomized and extruded alloy, equiaxed grains with the average size of 400 nm and finely distributed dispersoids with their particle sizes ranging from 50nm to 200nm were observed. For the melt spun and hot extrusion processed alloy, refined microstructural feature consisting of equiaxed grains with the average size of 200nm and fine dispersoids with their particle sizes under 50nm appeared to exhibit a difference in microstructure. Strength of the latter alloy was higher than that for the former alloy up to elevated temperatures.

  • PDF

Investigating the Colour Difference of Old and New Blue Japanese Glass Pigments for Artistic Use

  • Chua, Lynn;Quan, Seah Zi;Yan, Gao;Yoo, Woo Sik
    • Journal of Conservation Science
    • /
    • v.38 no.1
    • /
    • pp.1-13
    • /
    • 2022
  • Colour consistency is an important consideration when selecting pigments used on works of art. In this study, we analyse the colour difference between two sets of synthetic blue glass pigments acquired at least 8 years apart from the same manufacturer in Japan. The old pigment set (unused, dry powder with four different grain sizes) appears faded compared to the new set. These pigments are made available for artistic use, commonly in Nihonga or Japanese paintings. Raman spectroscopy and SEM-EDS results characterize these pigments as cobalt aluminate spinels dissolved in leaded glaze, a special class of complex coloured inorganic pigments that is not well-understood in the field of conservation. Colour difference between the old and new pigments with four different grain sizes were quantified by analysing photomicrographs with image analysis software. Blue pigments with coarse and extremely fine grains showed significant colour change compared to pigments with medium and fine grain sizes. The high occurrence of crystallites in the finer grains give a final colour that is bluer and lighter. Possible causes for the colour difference including manufacturing methods and storage environment are discussed.

The influence of microstructure size on the tensile fracture behavior or dual phase steel (복합조직망의 파괴거동에 미치는 미시조직크기의 영향)

  • ;Kim, Jung Kyu
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.5 no.3
    • /
    • pp.223-229
    • /
    • 1981
  • A study has been made of the fracture strength and ductility of the dual phase microstructure, in which the martensitic phase encapsulated islands of ferritic phase in association with the cleavage cracking of ferrite grains. It was found the final fracture occured in a brittle manner, starting from the Griffith crack which consisted of the cleavage crack in the ferrite grains and the cracks in second phase. Furthermore, the effects of the ferrite grain sizes on the Griffith crack were also discussed.

Grain Growth Revealed by Multi-wavelength Analysis of Non-axisymmetric Substructures in the Protostellar Disk WL 17

  • Han, Ilseung;Kwon, Woojin;Aso, Yusuke
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.59.2-59.2
    • /
    • 2020
  • Disks around protostars are the birthplace of planets. The first step toward planet formation is grain growth from ㎛-sized grains to mm/cm-sized grains in a disk, particularly in dense regions. In order to study whether grains grow and segregate at the protostellar stage, we investigate the ALMA Band 3 (3.1 mm) and 7 (0.87 mm) dust continuum observations of the protostellar disk WL 17 in ρ Ophiuchus L1688 cloud. As reported in a previous study, the Band 3 image shows substructures: a narrow ring and a large central hole. On the other hand, the Band 7 image shows different substructures: a non-axisymmetric ring and an off-center hole. The two-band observations provide a mean spectral index of 2.3, which suggests the presence of mm/cm-sized large grains. Its non-axisymmetric distribution may imply dust segregation between small and large grains. We perform radiative transfer modeling to examine the size and spatial distributions of dust grains in the WL 17 disk. The best-fit model suggests that large grains (>1 cm) exist in the disk, settling down toward the midplane, whereas small grains (~10 ㎛) well mixed with gas are distributed off-center and non-axisymmetrically in a thick layer. The low spectral index and the modeling results suggest that grains rapidly grow at the protostellar stage and that grains differently distribute depending on sizes, resulting in substructures varying with observed wavelengths. To understand the differential grain distributions and substructures, we discuss the effects of the protoplanet(s) expected inside the large hole and the possibility of gravitational instability.

  • PDF

Synthesis and Microstructural Characterization of Mechanically Milled $(Ti_{52}Al_{48})_{100-x}$-xB (x=0,0.5,2,5) Alloys (기계적 분쇄화법으로 제조된 $(Ti_{52}Al_{48})_{100-x}$-xB(x=0,0.5,2,5) 합금분말의 제조 및 미세조직 특성)

  • 표성규
    • Journal of Powder Materials
    • /
    • v.5 no.2
    • /
    • pp.98-110
    • /
    • 1998
  • $Ti_{52}Al_{48}$ and $(Ti_{52}Al_{48})_{100-x}B_x(x=0.5, 2, 5)$ alloys have been Produced by mechanical milling in an attritor mill using prealloyed powders. Microstructure of binary $Ti_{52}Al_{48}$ powders consists of grains of hexagonal phase whose structure is very close to $Ti_2Al$. $(Ti_{52}Al_{48})_{95}B_5$ powders contains TiB2 in addition to matrix grains of hexagonal phase. The grain sizes in the as-milled powders of both alloys are nanocrystalline. The mechanically alloyed powders were consolidated by vacuum hot pressing (VHP) at 100$0^{\circ}C$ for 2 hours, resulting in a material which is fully dense. Microstructure of consolidated binary alloy consists of $\gamma$-TiAl phase with dispersions of $Ti_2AlN$ and $A1_2O_3$ phases located along the grain boundaries. Binary alloy shows a significant coarsening in grain and dispersoid sizes. On the other hand, microstructure of B containing alloy consists of $\gamma$-TiAl grains with fine dispersions of $TiB_2$ within the grains and shows the minimal coarsening during annealing. The vacuum hot pressed billets were subjected to various heat treatments, and the mechanical properties were measured by compression testing at room temperature. Mechanically alloyed materials show much better combinations of strength and fracture strain compared with the ingot-cast TiAl, indicating the effectiveness of mechanical alloying in improving the mechanical properties.

  • PDF

Modeling Grain Rotational Disruption by Radiative Torques and Extinction of Active Galactic Nuclei

  • Giang, Nguyen Chau;Hoang, Thiem
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.66.1-66.1
    • /
    • 2021
  • Extinction curves observed toward individual Active Galactic Nuclei (AGN) usually show a steep rise toward Far-Ultraviolet (FUV) wavelengths and can be described by the Small Magellanic Cloud (SMC)-like dust model. This feature suggests the dominance of small dust grains of size a < 0.1 ㎛ in the local environment of AGN, but the origin of such small grains is unclear. In this paper, we aim to explain this observed feature by applying the RAdiative Torque Disruption (RATD) to model the extinction of AGN radiation from FUV to Mid-Infrared (MIR) wavelengths. We find that in the intense radiation field of AGN, large composite grains of size a > 0.1 ㎛ are significantly disrupted to smaller sizes by RATD up to dRATD > 100 pc in the polar direction and dRATD ~ 10 pc in the torus region. Consequently, optical-MIR extinction decreases, whereas FUV-near-Ultraviolet extinction increases, producing a steep far-UV rise extinction curve. The resulting total-to selective visual extinction ratio thus significantly drops to RV < 3.1 with decreasing distances to AGN center due to the enhancement of small grains. The dependence of RV with the efficiency of RATD will help us to study the dust properties in the AGN environment via photometric observations. In addition, we suggest that the combination of the strength between RATD and other dust destruction mechanisms that are responsible for destroying very small grains of a <0.05 ㎛ is the key for explaining the dichotomy observed "SMC" and "gray" extinction curve toward many AGN.

  • PDF

Effects of Soaking and Particle Sizes on the Properties of Rice Flour and Gluten-free Rice Bread

  • Song, Ji-Young;Shin, Mal-Shick
    • Food Science and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.759-764
    • /
    • 2007
  • To investigate the effect of soaking and particle sizes on the properties of rice flour and gluten-free rice bread, wet-milled (WRF, dried at $20^{\circ}C$) and dry-milled rice flours (DRF) were passed through sieves (45 or 100 mesh). Soaking of the rice grains affected the particle size distribution of flour passed through the same size screen. The L and b values of WRF were higher than those of DRF and were not changed with decreasing particle sizes, but DRF increased L and decreased b values. The initial pasting temperatures and setback viscosities of both flours decreased with decreasing particle sizes. The swelling powers at $100^{\circ}C$ increased with decreasing particle sizes in DRF, but maintained in WRF. Starch granules were observed on the surface of flour particles in WRF. The apparent viscosity of WRF paste exhibited 3-5 times higher than that of DRF. Thus, wet milled rice flour with smaller particle sizes (${\phi}<150\;{\mu}m$) showed better properties for making gluten-free rice bread.

Fall-cone testing of different size/shape sands treated with a biopolymer

  • Cabalar, Ali Firat;Demir, Suleyman
    • Geomechanics and Engineering
    • /
    • v.22 no.5
    • /
    • pp.441-448
    • /
    • 2020
  • This paper presents a study on the undrained shear strength (su) of various sands treated with a biopolymer by employing an extensive series of laboratory fall-cone penetration values covered a range of about 15 mm to 25 mm. In the tests, two sizes (0.15 mm-0.30 mm, and 1.0 mm-2.0 mm) and shapes (rounded, angular) of sand grains, Xanthan gum (XG), and distilled water were used. The XG biopolymer in 0.0%, 1.0%, 2.0%, and 3.0% by dry weight were mixed separately with four different sands, and water. The tests results obtained at the same water content revealed an increase in the su values at different levels with an increase in the XG content. Treating the sands with the XG biopolymer addition was concluded to have a greater efficacy on finer and more angular grains than coarser and more rounded grains in the samples. Overall, the present study indicates that different amount of the XG biopolymer has an important potential to be utilized for increasing the su values of samples with various size/shape of sand grains and water content.

The Effect of Ca Addition on the Grain Growth Inhibition During Reheating Process of Al-Zn-Mg Al Alloys for Thixo-extrusion (반응고 Al-Zn-Mg계 합금의 반용융 압출을 위한 재가열 시 결정립 성장 억제에 미치는 Ca 첨가의 영향)

  • Park, Hyung-Won;Kim, Dae-Hwan;Shim, Sung-Yong;Kim, Hee-Kyung;Seong, Bong-Hak;Choi, Chang-Ock;Lim, Su-Gun
    • Journal of Korea Foundry Society
    • /
    • v.31 no.6
    • /
    • pp.347-353
    • /
    • 2011
  • There is thixo-extrusion to form high strength aluminum alloy. But, it is a problem that grains become grain coarsening during reheating process because the alloy was exposed at high temperature. In order to solve grain growth during reheating process, calcium was added in Al-Zn-Mg alloys. Primary a grain sizes of semi-solid Al-Zn-Mg-(0, 0.4, 0.6 and 0.9, wt.%)Ca were measured with image analyzer after reheating. Measured primary a grain sizes were applied to LSW(Lifshitz-Slyozov and Wagner) equation to check the effect of Ca on grain coarsening. Coarsening rate constant K values of semi-solid Al-Zn-Mg-(0, 0.4, 0.6 and 0.9, wt.%)Ca alloys were $371\;mm^3s^{-1}$, $247\;mm^3s^{-1}$, $198\;mm^3s^{-1}$ and $166 mm^3s^{-1}$, respectively. As increasing calcium content, K value decreased which means grains are refined. Also, grains of calcium addition were more spherical than that of calcium free.