• Title/Summary/Keyword: grain-size distribution

Search Result 650, Processing Time 0.027 seconds

Prediction of the Degree of Saturation Using the Soil-Water Characteristic Curves on an Unsaturated Soil (흙-수분 특성곡선 방정식을 이용한 포화도의 예측)

  • Song, Chang-Seob
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.6
    • /
    • pp.61-69
    • /
    • 2004
  • The aim of the work described in this paper was to confirm the application of the equation of the soil-water characteristic curves on an unsaturated soil. A series of suction test for unsaturated soils was conducted on the selected 4 kinds of soil using modified pressure extractor apparatus. And it was carried out to analyse The experimental parameters which can be describe the soil-water characteristics, were determined by using the data obtained from the experiment. From the results, it was found that The matric suction varied according to the grain size distribution, amount of fine grain particles and void ratio. Also it was found that the residual degree of saturation was decreased with in crease of the void ratio, but the pore size distribution index and air entry value were increased with in crease of the void ratio. And The application of the soil-water characteristic curve equation was confirmed for the various conditions and the various state by the comparison between the measured degree of saturation and the predicted degree of saturation.

The application of hydrated fine MgO particles for flux pinning center in the HTS-BSCCO system

  • 김성환;김철진;정준기;박성창;유재무
    • Progress in Superconductivity
    • /
    • v.3 no.2
    • /
    • pp.188-192
    • /
    • 2002
  • To introduce flux pinning center in HTS-BSCCO system, nano-size MgO particles were uniformly distributed within the Bi-2223 grain by partial hydration of MgO. The existing method MgO doped Bi-2223 used nato-size MgO powders, which resulted in agglomeration during mixing or grain growth during heat-treatment due to the high surface energy of the fine particles. By hydration of the MgO surface, the agglomeration of the MgO powders was avoided and the size of remaining MgO core was controlled by changing hydration medium and time. The thin film obtained by spin coating of (Bi_$1.8/Pb_{0.4}$)$Sr_2$$_{Ca}$$2.2/Cu_3$ $O_{y}$ nitrate solution mixed with hydrated MgO showed the even distribution of nano-size MgO particles in the Bi-2212 grains.s.s.

  • PDF

Suppression of Abnormal Grain Growth in Barium Titanate by Atmosphere Control

  • Lee, Byoung-Ki;Chung, Sung-Yoon;Jung, Yang-Il;Suk-Joong L. Kang
    • Journal of Powder Materials
    • /
    • v.8 no.2
    • /
    • pp.131-135
    • /
    • 2001
  • The ferroelectric properties of barium titanate strongly depend on its microstructure, in particular, grain size and distribution. During sintering, $BaTiO_3$ usually exhibits abnormal grain growth, which deteriorates considerably the ferroelectric properties. A typical technique to suppress the abnormal grain growth is the addition of dopants. Dopant addition, however, affects the ferroelectric properties and thus limits the application of $BaTiO_3$. Here, we report a simple but novel technique to prevent the abnormal grain growth of $BaTiO_3$ and to overcome the limitation of dopant use. The technique consists of stepwise sintering in a reducing atmosphere and in an oxidizing atmosphere. The materials prepared by the present technique exhibit uniform grain size and high dielectric properties. The technique should provide opportunities of having $BaTiO_3$-based materials with superior ferroelectric properties.

  • PDF

Heavy Metals in Surface Sediments of the Youngsan Estuary, West Coast of Korea (영산강 하구 표층 퇴적물의 중금속 함량 및 분포)

  • 조영길;박경양
    • Journal of Environmental Science International
    • /
    • v.7 no.4
    • /
    • pp.549-558
    • /
    • 1998
  • determine the distribution of heavy metals in estuarine sediments, forty surface sediment samples were collected from the Youngsan estuary, and analysed for their contents of Fe, Mn, Co, Cr, Cu, Ni, Zn and Pb. Contents of most analysed metals were comparable to those in the near shore environment around Korean peninsula, and little anthropogenic effect was identified. However, there was a contrasting behavior among the metals with respect to their relationship with the grain-size of sediments. Contents of Fe, Co, Cr and Ni demonstrated a fairly linear relationship with the grain-size of sediments whereas those of Mn, Cu, Zn and Pb did not. This different behavior In these metals was Interpreted as being the result of the additional inputs. The R-mode factor analysis also confirmed the different behavior of Cu, Zn, Pb and Mn from that of Fe, Co, Cr and Ni.

  • PDF

Variation of Local Coercivity Distribution in CoCrPt Alloy Films with Pt Composition (Pt 함량에 따른 CoCrPt 합금박막의 국소보자력 분포 변화)

  • Im, Mi-Young;Choe, Sug-Bong;Shin, Sung-Chul
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.1
    • /
    • pp.20-23
    • /
    • 2002
  • The local coercivity distribution of CoCrPt alloy films prepared by dc magnetron sputtering has been investigated by means of a magneto-optical microscope magnetometer (MOMM) capable of simultaneously measuring the local properties on 400 nm spatial resolutions. Serial samples of CoCrPt alloy films were prepared with the Pt composition of a range from 6 to 28 at. %. We find that the local coercivity distribution crosses over from Gaussian to non-Gaussian distribution in CoCrPt alloy films with increasing Pt composition, with increasing trends in the width of the distribution as well as the average local coercivity. Transmission electron microscopy (TEM) studies reveal that our findings are closely correlated with the dependences of the grain size distribution and its average size on Pt concentration.

Effect of $Nb_2O_5$ and $UO_2$ Powder Types on Sintered Density and Grain Size of the $UO_2$ Pellet

  • Yoo, Ho-Sik;Kim, Hyung-Soo
    • Nuclear Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.196-200
    • /
    • 1997
  • The variation of sintered density and fain size in ex-AUC, ex-ADU and granulated ex-ADU UO$_2$ pellets in which 0.1~1.0wt% Nb$_2$O$_{5}$ were doped were examined. Pellets were sintered in an atmosphere of H$_2$ at 1$700^{\circ}C$ for 4h. All the specimens tested shooed more than 94% T.D.(Theoretical Density). Sintered density decreased with increasing the amount of Nb$_2$O$_{5}$. Powder types had little influence on the sintered density. Pore size distribution was shifted to the larger ones as Nb$_2$O$_{5}$ was added. The increase of total pore volume and grain growth due to the addition of Nb$_2$O$_{5}$ were thought to be the cause of the sintered density decrease. The largest grain size was seen in the 1. 0wt% Nb$_2$O$_{5}$ doped ex-AUC UO$_2$ pellets. Their average size was 13.9 ${\mu}{\textrm}{m}$.m}$.

  • PDF

Grain Growth Behavior of (K0.5Na0.5)NbO3 Ceramics Doped with Alkaline Earth Metal Ions

  • Il-Ryeol Yoo;Seong-Hui Choi;Kyung-Hoon Cho
    • Korean Journal of Materials Research
    • /
    • v.33 no.4
    • /
    • pp.135-141
    • /
    • 2023
  • The volatilization of alkali ions in (K,Na)NbO3 (KNN) ceramics was inhibited by doping them with alkaline earth metal ions. In addition, the grain growth behavior changed significantly as the sintering duration (ts) increased. At 1,100 ℃, the volatilization of alkali ions in KNN ceramics was more suppressed when doped with alkaline earth metal ions with smaller ionic size. A Ca2+-doped KNN specimen with the least alkali ion volatilization exhibited a microstructure in which grain growth was completely suppressed, even under long-term sintering for ts = 30 h. The grain growth in Sr2+-doped and Ba2+-doped KNN specimens was suppressed until ts = 10 h. However, at ts = 30 h, a heterogeneous microstructure with abnormal grains and small-sized matrix grains was observed. The size and number of abnormal grains and size distribution of matrix grains were considerably different between the Sr2+-doped and Ba2+-doped specimens. This microstructural diversity in KNN ceramics could be explained in terms of the crystal growth driving force required for two-dimensional nucleation, which was directly related to the number of vacancies in the material.

Physicochemical characteristics of rice variety for dry-milled flour

  • Yoon, Mi-Ra;Kwak, Jieun;Lee, Jeom-Sig;Won, Yong-Jae;Kim, Mi-Jung;Choi, Induck;Jeon, Yong-Hee;Kim, Sun Lim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.294-294
    • /
    • 2017
  • Rice (Oryza sativa L.) is one of the main agricultural crops in Asian countries, including Korea, and is considered as the most important staple food in the world. Rice is also processed into flour, which is consumed through various foods such as cake, noodle, bread, and confectionary. Rice flour quality is highly dependent on variety and milling conditions. Producing rice flour with fine particles is more difficult than wheat flour because of its grain hardness. The Korean rice varieties representing different amylose contents were selected for this study. The relationship between the morphological and starch characteristics of rice kernels and the appropriate varieties for producing good-quality, dry-milled rice flour were examined. The hardness of the rice kernels was determined by measuring the pressure at the grain breakage point. The damaged starch content of the rice flour was determined using a Megazyme starch damage assay kit. The particle-size distribution of the rice flour was measured as the volume-base distribution using a laser-diffraction particle size analyzer. The mean particle-size distribution of the dry-milled flour obtained was between $65.3{\sim}105.1{\mu}m$ among the rice varieties. The opaque, non-glutinous, Seolgaeng rice demonstrated a narrow peak at the fine size, whereas the entire particle-distribution range for other varieties was wide. Seolgaeng exhibited significantly lower damaged starch content of dry-milled flour than the other varieties (p < 0.05). Seolgaeng showed lowest in energy consumption on rice flour production with 200 mesh particle size. Accordingly, it is possible to produce dry-milled rice flour which is similar to wheat flour that would considerably reduce milling costs.

  • PDF

The relationship between precursor concentration and antibacterial activity of biosynthesized Ag nanoparticles

  • Balaz, Matej;Balazova, Ludmila;Kovacova, Maria;Daneu, Nina;Salayova, Aneta;Bedlovicova, Zdenka;Tkacikova, Ludmila
    • Advances in nano research
    • /
    • v.7 no.2
    • /
    • pp.125-134
    • /
    • 2019
  • The Origanum vulgare L.-mediated synthesis of Ag nanoparticles was successfully realized within the present study. Various concentrations of the $AgNO_3$ used as a silver precursor (1, 2.5, 5, 10 and 100 mM) were used. Very rapid formation of Ag nanoparticles was observed, as only minutes were necessary for the completion of the reaction. With the increasing concentration, red shift of the surface plasmon resonance peak was observed in the Vis spectra. According to photon cross-correlation spectroscopy results, the finest grain size distribution was obtained for the 2.5 mM sample. The transmission electron microscopy analysis of this sample has shown bimodal size distribution with larger crystallites with 100 nm size and smaller around 10 nm. The antibacterial activity was also the best for this sample so the positive correlation between good grain size distribution and antibacterial activity was found. The in-depth discussion of antibacterial activity with related works from the materials science point of view is provided, namely emphasizing the role of effective nanoparticles distribution within the plant extract or matrix. The antibacterial activity seems to be governed by both content of Ag nanoparticles and their effective distribution. This work contributes to still expanding environmentally acceptable field of green synthesis of silver nanoparticles.