• Title/Summary/Keyword: grain size evolution

Search Result 135, Processing Time 0.027 seconds

Temperature-Dependent Thermal and Chemical Stabilities as well as Mechanical Properties of Electrodeposited Nanocrystalline Ni

  • Zheng, Liangfu;Peng, Xiao
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1293-1302
    • /
    • 2018
  • Nanocrystalline (NC) Ni electrodeposits (EDs) with a mean grain size of $34{\pm}12nm$ has been investigated, from room temperature to $800^{\circ}C$ under a purge gas of argon, by both non-isothermal and isothermal differential scanning calorimetry measurements, in combination with characterization of temperature-dependent microstructural evolution. A significant exothermic peak resulting from superimposition of recrystallization and surface oxidation occurs between 340 and $745^{\circ}C$ at a heating rate of $10^{\circ}C/min$ for the NC Ni EDs. The temperatures for recrystallization and oxidation increase with increasing the heating rate. In addition, recrystallization leads to a profound brittle-ductile transition of the Ni EDs in a narrow range around the peak temperature for the recrystallization.

Consolidation and Mechanical Behavior of Gas Atomized MgZn4.3Y0.7 Alloy Powders using High Pressure Torsion (고압비틀림 공정을 통한 급속응고 MgZn4.3Y0.7 합금 분말의 치밀화 및 기계적 거동)

  • Yoon, Eun-Yoo;Chae, Hong-Jun;Kim, Taek-Soo;Lee, Chong-Soo;Kim, Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.17 no.3
    • /
    • pp.190-196
    • /
    • 2010
  • In this paper, rapid solidified Mg-4.3Zn-0.7Y (at.%) alloy powders were prepared using an inert gas atomizer, followed by a severe plastic deformation technique of high pressure torsion (HPT) for consolidation of the powders. The gas atomized powders were almost spherical in shape, and grain size was as fine as less than $5\;{\mu}m$ due to rapid solidification. Plastic deformation responses during HPT were simulated using the finite element method, which shows in good agreement with the analytical solutions of a strain expression in torsion. Varying the HPT processing temperature from ambient to 473 K, the behavior of powder consolidation, matrix microstructural evolution and mechanical properties of the compacts was investigated. The gas atomized powders were deformed plastically as well as fully densified, resulting in effective grain size refinements and enhanced microhardness values.

Effects of electroslag remelting process and Y on the inclusions and mechanical properties of the CLAM steel

  • Qiu, Guoxing;Zhan, Dongping;Li, Changsheng;Yang, Yongkun;Jiang, Zhouhua;Zhang, Huishu
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.811-818
    • /
    • 2020
  • Y-containing CLAM steels were melted via vacuum induction melting and electroslag remelting. In this study, the evolution, microstructure, and mechanical properties of the alloy inclusions (ESR-1 (0 wt.% Y), ESR-2 (0.016 wt.% Y) and ESR-3 (0.042 wt.% Y)) were investigated. Further, the number of inclusions in ESRed steel was observed to obviously decrease, and the distributions were more uniform. The fine Y-Al-O inclusions (1-2 ㎛) were the main inclusions in ESR-2. The addition of Y affected the prior austenite grain size (PAGZ), increasing the tensile strength at test temperature. Low ductile-brittle transition temperature (DBTT) was obtained because of the fine PAGZ and dispersive inclusions. For the ESRed CLAM steel with 0.016 wt.% Y, the yield strengths were 621 MPa at 20 ℃ and 354 MPa at 600 ℃ in air. Further, the uniform elongation and elongation of the ESR-2 alloy were 5.5% and 20.1% at 20 ℃, respectively. Meanwhile, the DBTT tested using full-size Charpy impact specimen (55 cm × 10 cm × 10 cm) was reduced to -83 ℃.

Microstructure and Mechanical Properties of ODS Ferrite Produced by Reactive Milling for the MSR Suppression (MSR (Mechanically induced Self-sustaining Reaction)이 억제된 반응성 밀링에 의해 제조된 분산강화 페라이트의 미세조직과 기계적 특성)

  • Hwang, Seung J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.6
    • /
    • pp.279-287
    • /
    • 2013
  • Oxide Dispersion Strengthened (ODS) Fe with $Al_2O_3$ dispersoid was successfully produced by reactive milling with a mixture of Fe, $Fe_3O_4$ (Magnetite), $Fe_2O_3$ (Hematite) and Al reactants at cryogenic temperature. The milled powders were consolidated by Vacuum Hot Press (HP) at 1323 K, and the consolidated materials were characterized by Transmission Electron Microscopy (TEM), Scanning Transmission Electron Microscopy (STEM), and Energy Dispersive Spectroscopy (EDS); the yield strength and the hardness of the consolidated materials were determined by compressive test and Vickers hardness test at room temperature. The grain size of the materials was estimated by X-ray Diffraction technique using the scherrer's formula. The TEM observations showed that the microstructure was comprised with a mixture of nanocrystalline Fe matrix and $Al_2O_3$ nano-dispersoids with a bimodal size distribution; the 0.2% off-set yield strength of the materials was as high as $758{\pm}29$ MPa and the Vickers hardness was $358{\pm}2$. The effect of the cryogenic milling and addition of extra Fe powder was discussed on the suppression of MSR (Mechanically induced Self-sustaining Reaction) for the desired microstructural evolution of ODS alloys.

Microstructure and Electrical Properties of Pb[(Mg,Mn)Nb]O3-Pb(Zr,Ti)O3 Piezoelectric Ceramics

  • Kim, Jin-Ho;Kim, Jong-Hwa;Baik, Seung-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.5
    • /
    • pp.202-209
    • /
    • 2005
  • Phase evolution, microstructure and the electrical properties such as $k_p$ and $Q_m$ of $Pb(Mg_{1/3}Nb_{2/3})O_3[PMN]-Pb(Mn_{1/3}Nb_{2/3})O3[PM'N]-PbZrO_3[PZ]-PbTiO_3[PT]$ quaternary system were investigated within the compositional ranges $0{\leq}y{\leq}0.125$, y+z=0.125, and $0.39{\leq}x{\leq}0.54$ of the formula $Pb_{0.97}Sr_{0.03}[Mg_{1/3}Nb_{2/3})_y\;(Mn_{1/3}Nb_{2/3})_z\;(Zr_{x}Ti_{1-x})_{1-(y+z)}]O_3$. In the case of increasing Mn/(Mg+Mn) ratio for a fixed Zr/Ti ratio of 47.5/52.5, phase relation remained unchanged but the grain size drastically decreased, and the electrical properties changed as following: both $k_P$ and $Q_m$ reached the peak values at $Mn/(Mg+Mn)\cong0.3l7$ and gradually decreased; $\varepsilon33^T$ showed a monotonic decrease; P-E hysteresis loop gradually changed to asymmetrical one, and $E_i$ increased in correspondence. With increasing Zr/Ti ratio for a fixed Mn/(Mg+Mn) ratio of 0.317, on the contrary, the cell parameter $(\alpha^2c)^{1/3}$ gradually increased, and tetragonal-rhombohedral morphotropic phase boundary appeared in the range of $51/49{\leq}Zr/Ti{\leq}54/46$. the meantime, the grain size substantially increased, and the electrical properties changed as following: $k_P$ and $\varepsilon33^T$ reached peak values at Zr/Ti=51/49 and 48/52, respectively, and then gradually decreased; change of $Q_m$ was adverse to $k_P$; both $E_C\;and\;E_i$ considerably decreased while $P_S$ moderately increased. For the system 0.125(PMN+PM'N)-0.875PZT studied, the composition Mn/(Mg+Mn)=0.3l7 and Zr/Ti=51/49 revealed some promising electrical properties for piezoelectric transformer application such as $k_P=0.58,\;Q_m\cong1000$, and $\varepsilon^T_{33}=970$, as well as dense and fine-grained microstructure.

Holocene paleoenvironmental changes in the Lake Khuvsgul, Northern Mongolia (몽골 북부 흡수굴호의 홀로세 동안의 고환경 변화)

  • Orkhonselenge, A.;Kashiwaya, K.;Ochiai, S.;Krivonogov, S.K.;Nakamura, T.
    • The Korean Journal of Quaternary Research
    • /
    • v.22 no.1
    • /
    • pp.28-36
    • /
    • 2008
  • The present study has focused on the environmental changes and evidences for sedimentation in the Lake Khuvsgul catchment during the Holocene period, inferred from short core sediment (BO03) from the eastern shore of Borsog Bay, which were analyzed in order to review records of the Holocene climatic evolution and Holocene history in Northern Mongolia. For the purpose of reconstruction of natural phenomenon that occurred in the lake catchment system during the Holocene, physical and chemical properties including HCl-soluble material, biogenic silica, organic matter and grain size distribution of minerals in the core sediments have been analyzed in this study. The vertical variations in composition for these properties show distinctly that five lines of paleoenvironmental evidence occurred in the lake catchment during the Holocene. A modified age model resulting from AMS carbon dating for the BO03 core sediment shows timings of these environmental events at 9.5 Kyr BP, 8.0 Kyr BP, 5.6 Kyr BP and 3.2 Kyr BP, respectively. Paleoenvironmental changes in the Lake Khuvsgul catchment system during the Holocene highlight distinctive features of the hydrological regime and geomorphologic evolution in the lake catchment due to regional landscape and global climatic changes corresponding with the Holocene optimum and thermal optimum. In particular, the change of hydrologic regime based on the sedimentological evidence has been caused by not only overland flow due to melting water, but also base flow due to thick permafrost around Khuvsgul region.

  • PDF

Effect of mechanical alloying on the microstructural evolution of a ferritic ODS steel with (Y-Ti-Al-Zr) addition processed by Spark Plasma Sintering (SPS)

  • Macia, E.;Garcia-Junceda, A.;Serrano, M.;Hong, S.J.;Campos, M.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2582-2590
    • /
    • 2021
  • The high-energy milling is one of the most extended techniques to produce Oxide dispersion strengthened (ODS) powder steels for nuclear applications. The consequences of the high energy mill process on the final powders can be measured by means of deformation level, size, morphology and alloying degree. In this work, an ODS ferritic steel, Fe-14Cr-5Al-3W-0.4Ti-0.25Y2O3-0.6Zr, was fabricated using two different mechanical alloying (MA) conditions (Mstd and Mact) and subsequently consolidated by Spark Plasma Sintering (SPS). Milling conditions were set to evidence the effectivity of milling by changing the revolutions per minute (rpm) and dwell milling time. Differences on the particle size distribution as well as on the stored plastic deformation were observed, determining the consolidation ability of the material and the achieved microstructure. Since recrystallization depends on the plastic deformation degree, the composition of each particle and the promoted oxide dispersion, a dual grain size distribution was attained after SPS consolidation. Mact showed the highest areas of ultrafine regions when the material is consolidated at 1100 ℃. Microhardness and small punch tests were used to evaluate the material under room temperature and up to 500 ℃. The produced materials have attained remarkable mechanical properties under high temperature conditions.

Effects of Ti Addition on Microstructure and Mechanical Properties of Mg-xAl-yZn Magnesium Alloys by Thixomolding Process (Thixomolding 공정으로 제조된 Mg-xAl-yZn계 마그네슘 합금의 미세조직과 기계적 물성에 미치는 Ti 첨가 영향)

  • Park, Sung-Hyun;Jang, Ho-Seung;Lee, Ji-Ho;Park, No-Jin;Oh, Myung-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.4
    • /
    • pp.168-174
    • /
    • 2019
  • The microstructural features and relative room temperature mechanical properties were investigated in various compositions of Mg-xAl-yZn alloys by thxiomolding process. The microstructure was composed of ${\alpha}$-Mg particles and mixture of ${\alpha}$-Mg and ${\beta}-Mg_{17}Al_{12}$ eutectic phase. The amount of ${\beta}-Mg_{17}Al_{12}$ eutectic phase in mixture was increased with increasing Al and Zn contents without grain refinement. After adding Ti content, however, the morphology of ${\beta}-Mg_{17}Al_{12}$ eutectic phase transformed from net-like to discontinuous shape and the average grain size reduced. To determine the relationship between microstructural features and their mechanical properties, a tensile test was performed at room temperature. As a result, it was found that the mechanical properties were improved in all of Ti contained alloys due to increased elongation and the mechanisms are discussed in terms of microstructural evolution.

Light Scattering from Microscopic Structure and Its Role on Enhanced Haze Factor

  • Kang, Junyoung;Park, Hyeongsik;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.340-340
    • /
    • 2016
  • We have prepared alumina (Al2O3) doped zinc oxide (AZO) films by DC magnetron sputtering (MS) technique and obtained higher self surface texturing at a high target angle (f). We have characterized the films and applied it as a front electrode of a single junction amorphous silicon solar cell. At a lower f the deposited films show higher values of optical gap (Eg), charge carriers mobility & concentration, crystallite grain size and wider wavelength range of transmission. At higher target angle the sheet resistance, surface roughness, haze factor etc for the films increase. For f=72.5o the haze factor for diffused transmission becomes 6.46% at 540 nm wavelength. At f=72.5o the material shows a reduction in crystallinity and evolution of a hemispherical-type sub-micron surface textures. A Monte Carlo method (MCM) of simulation of the AZO film deposition shows that such an enhanced self-surface texturing of the films at higher f is possible.

  • PDF

Effect of Processing Variables on Microstructure and Critical Current Density of BSCCO Superconductors Tape (BSCCO 초전도 선재의 미세조직 및 임계전류밀도에 미치는 공정변수 효과)

  • 지봉기;김태우;주진호;김원주;이희균;홍계원
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.11
    • /
    • pp.1014-1021
    • /
    • 1998
  • We evaluated the effect of processing variables on microstructural evolution interface irregularity between Ag sheath and superconductor core and resultant critical current density(J$_{c}$) of (Bi,Pb)$_2$Sr$_2$Ca$_2$Cu$_3$O$_{x}$(2223) superconductor tape. The value of J$_{c}$ was significantly influenced by the interface irregularity, degree of texturing and relative 2223 content. The interface became more irregular(sausage effect), while the degree of texturing gradually improved as the dimension of tape decreased during forming process. As the dimension of wire/tape were changed from diameter of 3.25 mm to thickness of 0.20 mm, J$_{c}$ value was observed to be increased by 10 times. In addition, optimum sintering temperature for improved J$_{c}$ was observed to be 835$^{\circ}C$ in a ambient atmosphere probably due to combined effect of both improved texturing and high 2223 content. Microstructural investigation showed the degree of texturing was degraded by the existence of both second phases and interface irregularity. It was observed that larger grain size and better texturing was developed near relatively flat interface compared to those inside superconducting core.ting core.

  • PDF