• Title/Summary/Keyword: grain size evolution

Search Result 138, Processing Time 0.024 seconds

Prediction for the Dynamically Recrystallized Grain Size of AISI 304 (AISI 304 스테인리스강의 동적 재결정립 예측)

  • Kim S. I.;Yoo Y. C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.143-146
    • /
    • 2001
  • The evolution of dynamic recrystallization (DRX) was studied with torsion test for AISI 304 stainless steel in the temperature range of $900-1000^{\circ}C$ and strain rate range of 0.05-5/sec. The evolution of DRX was investigated with microstructural analysis and change of flow stress curve slope. The investigation of serrated grain boundaries using electron back scattered diffraction (EBSD) analysis indicated that the nucleated new DRX grain size was similar to the size of bulging part. Before the steady state, the dynamically recrystallizing grains do not remain a constant size and gradually grow to the size of fully DRX grain at steady state. The calculation of grain size was based on $X_{DRX}$ and the assumption, which the nucleated DRX grains are growing to the steady state, continuously. It was found that the calculated results agreed with the microstructure of the alloy.

  • PDF

Microstructure Evolution of Superalloy Nimonic 80A (초내열합금 Nimonic 80A의 미세조직 변화에 관한 연구)

  • Jeong H. S.;Cho J. R.;Park H. C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.174-177
    • /
    • 2004
  • The nickel-based alloy Nimonic 80A possesses strength, and corrosion, creep and oxidation resistance at high temperature. These products are used for aerospace, marine engineering and power generation, etc. The control of forging parameters such as strain, strain rate, temperature and holding time is important because the microstructure change in hot working affects the mechanical properties. It is necessary to understand the microstructure variation evolution. The microstructure change evolution occurs by recovery, recrystallization and grain growth phenomena. The dynamic recrystallization evolution has been studied in the temperature range $950-1250^{\circ}C$ and strain rate range $0.05-5s^{-1}$ using hot compression tests. The metadynamic recrystallization and grain growth evolution has been studied in the temperature range $950-1250^{\circ}C$ and strain rate range 0.05, $5s^{-1}$, holding time range 5, 10, 100, 600 sec using hot compression tests. Modeling equations are developed to represent the flow curve, recrystallized grain size, recrystallized fraction and grain growth phenomena by various tests. Parameters of modeling equation are expressed as a function of the Zener-Hollomon parameter. The modeling equation for grain growth is expressed as a function of initial grain size and holding time.

  • PDF

Pore Filling Theory of Liquid Phase Sintering and Microstrcture Evolution (액상소결의 기공채움 이론과 미세구조 발달)

  • 이성민
    • Journal of Powder Materials
    • /
    • v.6 no.1
    • /
    • pp.81-87
    • /
    • 1999
  • Based on the pore filling theory, the microstructure evolution during liquid-phase sintering has been analyzed in terms of interrelationship between average grain size and relative density. For constant liquid volume fraction, the microsturucture trajectories reduced to a single curve in a grain size(x)-density(y) map, regardless of grain growth constant. The slope of curves in the map was inversely proportional to average pore size, while it increased fapidly with liquid volume fraction. Increase in pore volume fraction retarded the densification considerably, but showed marginal effect on the slope. The activation energy of densification was predicted to be the same as that of grain growth as long as the liquid volume fraction is constant for any temperature range studied. The present analyses on microstricture evolution may demonstrate the usefulness of pore filling theory and provide a guideline for process optimization of liquid-phase sintering.

  • PDF

Effect of various cold rolling process on the evolution of texture and recrystallized grain size in AA 5052 sheet (AA 5052 판재의 집합조직 발달과 결정립 크기에 미치는 다양한 냉간압연 공정의 영향)

  • Lee, J.H.;Nah, J.J.;Huh, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.408-410
    • /
    • 2008
  • The evolution of texture and microstructure during recrystallization was tracked after different cold rolling of aluminum sheets. Texture of the sheet center were differentiated by different strain states due to prior deformation. The evolution of recrystallization texture was studied with the amount of shear applied during cold rolling. The final grain size after recrystallization annealing was varied due to the effective strain during deformation.

  • PDF

Microstructure Prediction of Superalloy Nimonic 80A for Hot Closed Die Forging (열간 형단조 Nimonic 80A의 미세조직 변화 예측)

  • Jeong H. S.;Cho J. R.;Park H. C.;Lee S. Y.
    • Transactions of Materials Processing
    • /
    • v.14 no.4 s.76
    • /
    • pp.384-391
    • /
    • 2005
  • The nickel-based alloy Nimonic 80A possesses the excellent strength, and the resistance against corrosion, creep and oxidation at high temperature. Its products are used in aerospace engineering, marine engineering and power generation, etc. Control of forging parameters such as strain, strain rate, temperature and holding time is important because change of the microstructure in hot working affects the mechanical properties. Change of the microstructure evolves by recovery, recrystallization and grain growth phenomena. The dynamic recrystallization evolution has been studied in the temperature range of $950\~1250^{\circ}C$ and strain rate range of $0.05\~5s^{-1}$ using hot compression tests. The metadynamic recrystallization and grain growth evolution has been studied in the temperature range of $950\~1250^{\circ}C$ and strain rate range $0.05,\;5s^{-1}$, holding time range of 5, 10, 100, 600 sec using hot compression tests. Modeling equations are proposed to represent the flow curve, recrystallized grain size, recrystallized fraction and grain growth phenomena by various tests. Parameters in modeling equations are expressed as a function of the Zener-Hollomon parameter. The modeling equation for grain growth is expressed as a function of the initial grain size and holding time. The modeling equations developed were combined with thermo-viscoplastic finite element modeling to predict the microstructure change evolution during hot forging process. The grain size predicted from FE simulation results is compared with results obtained in field product.

Effect of grain crushing on 1D compression and 1D creep behavior of sand at high stresses

  • Wang, Z.;Wong, R.C.K.
    • Geomechanics and Engineering
    • /
    • v.2 no.4
    • /
    • pp.303-319
    • /
    • 2010
  • The effect of grain crushing on the deformation of sand in 1D compression and 1D creep at high stresses was investigated theoretically and experimentally. An approach was proposed to formulate the process of grain crushing in sand in accordance with the laws of fracture mechanics and energy conservation. With this approach, the relation between the void ratio and the amount of grains crushed in 1D compression was derived. Laboratory test data were used to verify this derived relation. In addition, it was observed that there are similarities in evolution of grain size distribution in 1D compression and 1D creep tests. This implies that the changes in microstructure in sand under 1D compression and 1D creep are comparable.

Assessment of Grain Size Distribution in a Hammer-Forged Alloy 718 Disk (해머 단조된 Alloy 718 디스크의 결정립 분포 해석)

  • 염종택;박노광
    • Transactions of Materials Processing
    • /
    • v.6 no.3
    • /
    • pp.250-256
    • /
    • 1997
  • Hammer forging was employed for Alloy 718 disk. The change in grain size during hot forging depends very much on dynamic recrystallization. The final grain size depends especially on the critical strain$($\varepsilon$_C)$/TEX> for dynamic recrystallization and Zener-Holloman parameter(Z). In this study, the critical strain$($\varepsilon$_C)$, the strain for 50 pct. recrystallization$($\varepsilon$_{0.5})$ and fraction of dynamic recrystallization(Xdyn) were measured by compression tests. FE simulation was also carried out ot predict the evolution of microstructure. The strain, strain rate and temperature distribution predicted by forging simulation can be effectively used to predict the distribution of grain sizes in the forged workpiece. The present model predictions showed an excellent agreement with the microstructural evolution of hammer-forged Alloy 718 disks.

  • PDF

A Study on the Prediction of Grain Size Distribution in Hot Forging of Waspaloy Turbine Disc (Waspaloy 터빈디스크의 열간 단조시 결정립분포 해석에 관한 연구)

  • Yeom, Jong-Taek;Lee, Chong-Soo;Kim, Jeoung-Han;Lee, Dong-Geun;Park, Nho-Kwang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.2 s.25
    • /
    • pp.70-76
    • /
    • 2006
  • The microstructure evolution during a hot forging of Waspaloy was investigated using the recrystallization model and FEM simulation. In order to obtain an uniform microstructure, hot forging was carried out by two step. The change of grain size during hot forging has a deep connection with dynamic recrystallization behavior. Avrami-type constitutive equation for the dynamic recrystallization was implemented into an user subroutine of 2D FE simulator. The evolution of grain structure in the two-step forging of Waspaloy was simulated using the 2D FEM user-subroutine. The detailed variation of microstructures due to dynamic recrystallization could effectively be predicted at various locations in a forged pancake.

Computer Simulation of Recrystallization and Grain Growth during Hot Forging Process of Waspaloy (Waspaloy의 열간 단조 공정중 재결정 거동과 결정립 성장에 대한 유한요소해석)

  • Kang, G.P.;Lee, K.H.;Lee, S.U.
    • Transactions of Materials Processing
    • /
    • v.17 no.2
    • /
    • pp.113-116
    • /
    • 2008
  • Computer simulation of microstructure evolution during hot forging process is of great interest in recent years. Recrystallization model and grain growth model which use a phenomenological approach were summarized. The upsetting and cogging processes of waspaloy were simulated using $DEFORM^{TM}$ and the change in grain size were investigated in each deformation procedure.

EBSD studies of the grain size and grain orientation distribution of $SrTiO_3$ (EBSD를 이용한 $SrTiO_3$의 입자 크기 및 입자 배향 분포)

  • Park, Myung-Beom;Shih, Shao-Ju;Cho, Nam-Hee;Cockayne, David J.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.46-46
    • /
    • 2006
  • $SrTiO_3$ was annealed at two different annealing times (1 h and 16 h) to investigate the annealing effect on the grain size and orientation distribution. Electron backscattered diffraction (EBSD) was used to analyze the grain size and grain orientation distributions of the $SrTiO_3$. It is possible to understand the annealing effect on the microstructure evolution, by comparing the grain size and orientation distribution of the $SrTiO_3$ as a function of annealing time.

  • PDF