• 제목/요약/키워드: grain interaction

검색결과 160건 처리시간 0.025초

Influence of grain interaction on lattice strain evolution in two-phase polycrystals

  • Han, Tong-Seok
    • Interaction and multiscale mechanics
    • /
    • 제4권2호
    • /
    • pp.155-164
    • /
    • 2011
  • The lattice strain evolution within polycrystalline solids is influenced by the crystal orientation and grain interaction. For multi-phase polycrystals, due to potential large differences in properties of each phase, lattice strains are even more strongly influenced by grain interaction compared with single phase polycrystals. In this research, the effects of the grain interaction and crystal orientation on the lattice strain evolution in a two-phase polycrystals are investigated. Duplex steel of austenite and ferrite phases with equal volume fraction is selected for the analysis, of which grain arrangement sensitivity is confirmed in the literature through both experiment and simulation (Hedstr$\ddot{o}$m et al. 2010). Analysis on the grain interaction is performed using the results obtained from the finite element calculation based on the model of restricted slip within crystallographic planes. The dependence of lattice strain on grain interactions as well as crystal orientation is confirmed and motivated the need for more in-depth analysis.

컴퓨터 시뮬레이션 기법을 이용한 입계면 - 이상 입자 간 상호작용 모사 연구 동향 (Current Trend of Second Phase Particle-grain Boundary Interaction Research using Computer Simulations)

  • 장근옥
    • 한국분말재료학회지
    • /
    • 제27권4호
    • /
    • pp.339-342
    • /
    • 2020
  • Since the interaction between the second-phase particle and grain boundary was theoretically explained by Zener and Smith in the late 1940s, the interaction of the second-phase particle and grain boundary on the microstructure is commonly referred to as Zener pinning. It is known as one of the main mechanisms that can retard grain growth during heat treatment of metallic and ceramic polycrystalline systems. Computer simulation techniques have been applied to the study of microstructure changes since the 1980s, and accordingly, the second-phase particle-grain boundary interaction has been simulated by various simulation techniques, and further diverse developments have been made for more realistic and accurate simulations. In this study, we explore the existing development patterns and discuss future possible development directions.

Inter-grain Exchange Interactions for Nanocrystalline Nd2.33Fe14B1.06Si0.21 Magnets

  • Jin, Han-Min;Yan, Yu;Wang, Xuefeng;Su, Feng
    • Journal of Magnetics
    • /
    • 제8권4호
    • /
    • pp.157-159
    • /
    • 2003
  • The strengths of the inter-grain exchange interaction were evaluated for nanocrystalline $Nd_{2.33}Fe_{14}B_{1.06}Si_{0.21}$ magnets of different grain size by comparing the $_{i}H_{c}$ calculated by micromagnetics with the experiments. With increase of the grain boundary thickness to that of the magnet of grain diameter 12.4, 24.8, 37.2 and 49.6 nm, the strengh of the interaction in reference to that without the grain boundary phase decreases to 83%, 69%, 54% and 42%.

나노압흔시 응력에 따른 결정립계거동의 분자역학모사 (MOLECULAR DYNAMICS SIMULATION OF STRESS INDUCED GRAIN BOUNDARY MIGRATION DURING NANOINDENTATION EXPERIMENTS)

  • 윤장혁;김성진;장호
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 추계학술발표강연 및 논문개요집
    • /
    • pp.39-39
    • /
    • 2003
  • Molecular dynamics (MD) simulation was performed to study the stress induced grain boundary migration caused by the interaction of dislocations with a gain boundary. The simulation was carried out in a Ni block (295020 atoms) with a ∑ = 5 (210) grain boundary and an embedded atom potential for Ni was used for the MD calculation. Stress was provided by indenting a diamond indenter and the interaction between Ni surface and diamond indenter was assumed to have a fully repulsive force to emulate a faction free surface. Results showed that the indentation nucleated perfect dislocations and the dislocations produced stacking faults in the form of a parallelepiped tube. The parallelepiped tube consisted of two pairs of parallel dislocations with Shockley partials and was produced successively during the penetration of the indenter. The dislocations propagated along the parallelepiped slip planes and fully merged onto the ∑ = 5 (210) grain boundary without emitting a dislocation on the other grain. The interaction of the dislocations with the grain boundary induced the migration of the grain boundary plane in the direction normal to the boundary plane and the migration continued as long as the dislocations merged onto the grain boundary plane. The detailed mechanism of the conservative motion of atoms at the gram boundary was associated with the geometric feature of the ∑ = 5 (210) grain boundary.

  • PDF

VOF와 FSI 방법을 적용한 CBT 연소 정밀 모델링 및 해석 (CBT Combustion Precise Modeling and Analysis Using VOF and FSI Methods)

  • 강정석;박종근;성홍계
    • 한국추진공학회지
    • /
    • 제26권5호
    • /
    • pp.35-43
    • /
    • 2022
  • 본 연구에서는 고체추진제를 사용하는 closed bomb test(CBT)의 연소에 대한 정밀 모델링 및 해석을 수행하였다. 기상과 고상을 동시에 해석하기 위해 fluid structure interaction(FSI) 기법을 사용하였으며 기체상과 그레인의 연소해석은 Eulerian 방법을, 그레인의 이동은 Lagrangian 방법을 적용하였다. 고체상의 그레인과 연소가스의 상호 작용은 소스텀을 통해 완전 결합(fully coupled) 되도록 하였다. 그레인의 연소거리와 연소면의 이동을 모사하기 위하여 volume of fluid(VOF) 방법을 사용하였고, 그레인에 작용하는 힘은 그레인 연소면에 작용하는 압력과 중력을 고려하고, VOF의 속도항에 그레인 연소속도와 그레인 이동속도를 고려하였다. 개발한 수치모델을 바탕으로 1개와 3개 그레인에 대한 연소해석을 수행하여 실험결과와 비교 검증하였다. 연소시에 나타나는 압력 섭동에 대한 음향장을 분석하였다.

Interaction fields based on incompatibility tensor in field theory of plasticity-Part II: Application-

  • Hasebe, Tadashi
    • Interaction and multiscale mechanics
    • /
    • 제2권1호
    • /
    • pp.15-30
    • /
    • 2009
  • The theoretical framework of the interaction fields for multiple scales based on field theory is applied to one-dimensional problem mimicking dislocation substructure sensitive intra-granular inhomogeneity evolution under fatigue of Cu-added steels. Three distinct scale levels corresponding respectively to the orders of (A)dislocation substructures, (B)grain size and (C)grain aggregates are set-up based on FE-RKPM (reproducing kernel particle method) based interpolated strain distribution to obtain the incompatibility term in the interaction field. Comparisons between analytical conditions with and without the interaction, and that among different cell size in the scale A are simulated. The effect of interaction field on the B-scale field evolution is extensively examined. Finer and larger fluctuation is demonstrated to be obtained by taking account of the field interactions. Finer cell size exhibits larger field fluctuation whereas the coarse cell size yields negligible interaction effects.

마그네슘의 결정립 성장과 집합조직: 상장모델 계산 (Grain Growth and Texture Evolution of Mg: Phase Field Modeling)

  • 김동욱;차필령
    • 한국분말재료학회지
    • /
    • 제18권2호
    • /
    • pp.168-171
    • /
    • 2011
  • We investigate grain growth behavior of poly-crystalline Mg sheet having strong basal fiber texture using phase field model for grain growth and micro-elasticity. Strong initial basal texture was maintained when external load was not imposed, but was weaken when external biaxial strain was imposed. Elastic interaction between elastic anisotropy of Mg grain and external load is the reason why texture evolution occurs.

Inter-Grain Exchange Interaction and Hysteresis Loops of Melt-Spun $Nd_{13}Fe_{77}B_{10}$

  • J. H. Min;Kim, Y. B.;Park, W. S.;Park, M. J.;Li Tian
    • Journal of Magnetics
    • /
    • 제1권2호
    • /
    • pp.69-74
    • /
    • 1996
  • Justeresos loops of melt-spun Nd13Fe77B10 cooled down at remanent state were measured at 4.2 K and 250 K. The hysteresis loops were analysed on the basis of the Stoner-Wohlfarth (S-W) model, the inter-grain exchange coupled single domain (SD) model and micromagnetism. The coercivity higher than that predicted from the S-W model and the striking shift of the thin minor loop along the H-axix observed at the fields of Hmax=4MA/m at 4.2 K indicated new evidences for the inter-grain exchange interaction . The S-W model failed in explaining the high iHc and the shift of the thin minor loop. The exchange coupled SD model was found to explain the experimental results qualitatively without difficulties associated with the S-W model. The micromagnetic calculations using a finite element technique simulated the experimental results fairly well quntitatively.

  • PDF

A multiple level set method for modeling grain boundary evolution of polycrystalline materials

  • Zhang, Xinwei;Chen, Jiun-Shyan;Osher, Stanley
    • Interaction and multiscale mechanics
    • /
    • 제1권2호
    • /
    • pp.191-209
    • /
    • 2008
  • In this paper, we model grain boundary evolution based on a multiple level set method. Grain boundary migration under a curvature-induced driving force is considered and the level set method is employed to deal with the resulting topological changes of grain structures. The complexity of using a level set method for modeling grain structure evolution is due to its N-phase nature and the associated geometry compatibility constraint. We employ a multiple level set method with a predictor-multicorrectors approach to reduce the gaps in the triple junctions down to the grid resolution level. A ghost cell approach for imposing periodic boundary conditions is introduced without solving a constrained problem with a Lagrange multiplier method or a penalty method. Numerical results for both uniform and random grain structures evolution are presented and the results are compared with the solutions based on a front tracking approach (Chen and Kotta et al. 2004b).

Association of Duration and Rate of Grain Filling with Grain Yield in Temperate Japonica Rice (Oryza sativa L.)

  • Yang, Woon-Ho;Park, Tae-Shik;Kwak, Kang-Su;Choi, Kyung-Jin;Oh, Min-Hyuk
    • 한국작물학회지
    • /
    • 제52권1호
    • /
    • pp.112-121
    • /
    • 2007
  • Grain filling is a crucial factor that determines grain yield in crops since it is the final process directly associated with crops' yield performance. Grain filling process can be characterized by the interaction of rate and duration of grain filling. This study was conducted, using 16 temperate japonica rice genotypes, with aims to (1) seek variations in grain filling duration and rate on area basis, (2) compare the contribution of grain filling duration and rate to grain yield, and (3) examine the influence of temperature and solar radiation for effective grain filling on grain yield in relation to grain filling duration and rate. Grain filling rate and duration exhibited highly significant variations in the ranges of $20.7{\sim}46.3\;g\;m^{-2}d^{-1}\;and\;11.2{\sim}35.5$ days, respectively, depending on rice genotypes. Grain yield on unit area basis was associated positively with grain filling duration but negatively with grain filling rate. Grain filling rate and duration were negatively correlated with each other. Final grain weight increased linearly with the rise in both cumulative mean temperature and cumulative solar radiation for effective grain filling. Higher cumulative mean temperature and cumulative solar radiation for effective grain filling were the results of longer grain filling duration, but not necessarily higher daily mean temperature and daily solar radiation for effective grain filling. Grain filling rate demonstrated an increasing tendency with the rise in daily mean temperature for effective grain filling but their relationship was not obviously clear. It was concluded that grain filling duration, which influenced cumulative mean temperature and cumulative solar radiation for effective grain filling, was the main factor that determined grain yield on unit area basis in temperate Japonica rice.