• 제목/요약/키워드: grain composition

검색결과 823건 처리시간 0.024초

곡물(糓物)의 열전도계수(熱傳導係數)에 관(關)한 연구(硏究) (Thermal Conductivities of Grain)

  • 김만수;고학균
    • Journal of Biosystems Engineering
    • /
    • 제7권1호
    • /
    • pp.1-16
    • /
    • 1982
  • The thermal conductivies of grain are influenced by many physical factors such as' initial temperature, moisture content, composition, bulk density or porosity of grain. However, not only few researchers considered all these factors in determining thermal conductivities of grain but also many researchers considered only moisture content as a major effective factor on the thermal conductivity. This study was conducted to experimentally determine the thermal conductivities of rough rice (3 Japonica-type, 3 Indica-type) and barley(covered, naked) as a function of initial temperature, moisture content and porosity of grain, and to investigate the effect of those physical factors on the thermal conductivities of grain. The results of this study are summarized as follows; 1. The average time correction value for this experimental apparatus was 7 sec, which. was insignificant to the calculated thermal conductivity. The resulting conductivity for considering time correction value was only 4.9 percent higher than that calculated by the non-corrected equation. 2. The thermal conductivity was in the range of 0.1208~0.2058W/$m^{\circ}K$ for naked barley, 0.1138~0.1724W/$m^{\circ}K$ for covered barley, 0.0912~0.1864W/$m^{\circ}K$ for Japonica-type rice and 0.086~0.1774W/$m^{\circ}K$ for Indica-type rice. 3. The thermal conductivities of grain increased with initial temperature and moisture content of grain but decreased with porosity of grain. 4. The regression equations of the thermal conductivity of each grain were determined as a function of initial temperature, moisture content and porosity. The regression equations of the thermal conductivity of both Japonica-type and Indica-type rough rice were also determined.

  • PDF

산업용지의 벌크 향상 및 건조에너지 절감을 위한 분말상 첨가제 제조기술 개발 (I) - 신규 유기물질 맥주박의 화학적.물리적 특성 평가 - (Development of New Powdered Additive and Its Application for Improving the Paperboard Bulk and Reducing Drying Energy (I) -Analysis of Chemical and Physical Properties of Brewers Grain -)

  • 이지영;김철환;최재성;김병호;임기백;김다미
    • 펄프종이기술
    • /
    • 제44권2호
    • /
    • pp.58-66
    • /
    • 2012
  • Brewers grain is a byproduct of beer brewing and consists primarily of grain husks, pericarp, and fragments of endosperm. Although this material is consumed by animals and used as fertilizer, a large amount of brewers grain is simply discarded. Therefore, new methods for utilizing this fibrous resource should be pursued. In this study, we examined the potential utilization of brewers grain as an additive in the paperboard industry by determining the chemical composition of brewers grain and the physical properties of brewers grain powders after grinding with two types of grinders. We found that brewers grain had a lower holocellulose content and higher lignin content and intermediate ash content when compared to other biomass materials, and did not contain any contaminants that would interfere with the papermaking process. Particles had a higher fiber length, less fiber width, and narrower shape factor distribution when ground by a blender type grinder than by a pin crusher type grinder. The blender type grinder was concluded to make regular brewers grain particles appropriate for papermaking.

PREDICTING MALTING QUALITY IN WHOLE GRAIN MALT COMPARED TO WHOLE GRAIN BARLEY BY NEAR INFRARED SPECTROSCOPY

  • Black, Cassandra K.;Panozzo, Joseph F.
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1618-1618
    • /
    • 2001
  • Predicting quality traits using near infrared (NIR) spectroscopy on whole grain samples has gained wide acceptance as a non-destructive, rapid and cost effective technique. Barley breeding programs throughout southern Australia currently use this technology as a tool for selecting malting quality lines. For the past 3 years whole grain barley calibrations have been developed at VIDA to predict malting quality traits in the early generation selections of the breeding program. More recently calibrations for whole grain malt have been developed and introduced to aid in selecting malted samples at the mid-generation stage for more complex malting quality traits. Using the same population set, barley and malt calibrations were developed to predict hot water extracts (EBC and IoB), diastatic power, free $\alpha$-amino nitrogen, soluble protein, wort $\beta$-glucan and $\beta$-glucanase. The correlation coefficients between NIR predicted values and laboratory methods for malt were all highly significant ($R^2$ > 0.84), whereas the correlation coefficients for the barley calibrations were lower ($R^2$ > 0.57) but still significant. The magnitude of the error in predicting hot water extract, diastatic power and wort $\beta$-glucan using whole grain malt was reduced by 50% when compared with predicting the same trait using whole grain barley. This can be explained by the complex nature of attempting to develop calibrations on whole grain barley utilizing malt data. During malting, the composition of barley is modified by the action of enzymes throughout the steeping and germination stages and by heating during the kilning stage. Predicting malting quality on whole grain malt is a more reliable alternative to predicting whole grain barley, although there is the added expense of micro-malting the samples. The ability to apply barley and malt calibrations to different generations is an advantage to a barley breeding program that requires thousands of samples to be assessed each year.

  • PDF

Preparation and Electric Properties of PbTiO$_3$Thin Films by Low-pressure Thermal Plasma Deposition

  • Nagata, Shingo;Wakiya, Naoki;Shinozaki, Kazuo;Mizutani, Nobuyasu
    • The Korean Journal of Ceramics
    • /
    • 제7권1호
    • /
    • pp.20-25
    • /
    • 2001
  • PbTiO$_3$ thin films were prepared by low-pressure thermal plasma deposition on (100)Pt/(100)MgO substrates. Mist of source material in which metal alkoxides are dissolved in 2-methoxyethanol was introduced into plasma through heating furnace and deposited onto substrates at $600^{\circ}C$. As-deposited PbTiO$_3$/Pt/MgO thin film prepared at 1.33$\times$10$^4$ Pa was grown epitaxially, but was consisted of many rectangular shaped grains, with many grain boundaries and it was impossible to measure electric properties. As-deposited film prepared at 1.00$\times$10$^4$ Pa showed weak peaks of X-ray diffraction and the film was not grown epitaxially. On the other hand, the film after annealed at $700^{\circ}C$ showed strong diffraction peaks and epitaxial growth was also observed. For annealed film, moreover, no clear grain boundaries were observed. The value of ${\varepsilon}_r$, tan${\delta}$, Pr and Ec of annealed film were 160, 3.2%, 10.4${\mu}$C.cm$^-2$ and 51.2kV.cm$^-1$, respectively. Since the composition, Pb/Ti, measured by EDS attaching to SEM changed point by point, the distribution of composition in annealed film was investigated and found out several relations between composition and electric properties. At stoichiometric composition, Pr and Ec showed the lowest value and they gradually became large as composition deviated from stoichiometric one. Moreover, the value of ${\varepsilon}_r$ became gradually large as the ratio of Ti became high.

  • PDF

고크롬 (α+γ) 2상강의 결정립 성장기구 (A study on the grain growth mechanism in dual-phase high Cr-steel)

  • 위명용
    • 열처리공학회지
    • /
    • 제11권4호
    • /
    • pp.324-332
    • /
    • 1998
  • The grain growth characteristics of dual-phase (${\alpha}+{\gamma}$) containing high Cr-steel have investigate using ${\alpha}$-, ${\gamma}$-single phases and (${\alpha}+{\gamma}$)dual-phase of 12%Cr Steel. The heat treatment has performed at $1000-1200^{\circ}C$ for 1-100hr. The results are as follows : 1) The grain growth rate in (${\alpha}+{\gamma}$) dual phase was substantially slower than that of single grain. 2) The relation between mean grain radius $\bar{{\gamma}}$ and annealing time t is, in general, described as following equation : $$(\bar{{\gamma}})^n-(\bar{{\gamma}_o})^n=K_n{\cdot}t{\cdots}{\cdots}(1)$$ i) In the case of single phase of high Cr steel, Eq.(1) is described as $(\bar{{\gamma}})^2-(\bar{{\gamma}_o})^2=K_2{\cdot}t$ and the grain growth is controlled by boundary migration. ii) In dual phase, the grain growth needs diffusion of alloying elements because the chemical composition of ${\alpha}$- and ${\gamma}$- phases differs from each other. When the volume fraction of ${\alpha}$-, ${\gamma}$-phase was almost equal and ${\gamma}$-phase in the case of 80 and $90%{\gamma}$. Eq.(1) is described as $(\bar{{\gamma}})^3-(\bar{{\gamma}_o})^3=K_3{\cdot}t$ because the grain growth is controlled by volume diffusion iii) In the case of ${\gamma}$-rich phase (80 and $90%{\gamma}$), the grain growth of minor phase (10 and $20%{\alpha}$) is described as $(\bar{{\gamma}})^4-(\bar{{\gamma}_o})^4=K_4{\cdot}t$ because the boundary diffusion is predominent rather than volume diffusion.

  • PDF

점진적 개발 단계를 고려한 새만금 복합곡물단지의 동태적 마스터플랜 수립 (Dynamic Masterplan of the Saemangeum Grain Complex for Progressive Development)

  • 정찬훈;김찬우;김솔희;박진선;서동욱;서교
    • 한국농공학회논문집
    • /
    • 제60권4호
    • /
    • pp.1-13
    • /
    • 2018
  • The grain complex of Saemangeum is created for promoting the foundation of agriculture combined the global competitiveness. However, the masterplan is being also revised with changing of local conditions and social needs. Thus, the dynamic masterplan is needed to consider the change of time for Saemangeum project. The present study was made to set up the dynamic masterplan of Saemangeum grain complex for handling the change such as project progress, local environment, and project conditions flexibly. In this study, the dynamic masterplan for the progressive development of water supply, farmland composition, and introduction facilities is presented to the 6-2 zone in three stages. We believed that the water supply would be possible through the pumping and desalination facilities with the development stages. The farmland composition proceeded for each complex with reclamation, soil preparation, and soft soil processing. And it is planned to carry out crop cultivation from the complex where the construction is completed first. The introduction facilities were analyzed focusing on the silos and forage loading facilities, and the optimal location of them was selected using road and accessibility. The concept of dynamic masterplan may provide the direction for the planning and progress of reclamation project.

Effect of Replacing Grain with Deoiled Rice Bran and Molasses from the Diet of Lactating Cows

  • Chaudhary, L.C.;Sahoo, A.;Agarwal, Neeta;Kamra, D.N.;Pathak, N.N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제14권5호
    • /
    • pp.646-650
    • /
    • 2001
  • The effect of feeding concentrate mixture devoid of grain on the performance of crossbred dairy cows was studied. Twelve crossbred cows of first/second lactation were randomly distributed into two equal groups. The animals of group 1 were fed on a concentrate mixture containing 30% maize grain whereas, the cows of group 2 were offered a concentrate mixture where grain was completely replaced with deoiled rice bran (DORB) and molasses. Wheat straw was given ad libitum to the cows of both the groups. The feeding was continued for 112 days. The intake of dry matter, CP and TDN were similar in both the groups. Digestibility of DM, OM, EE, NDF and ADF were also comparable between the groups. The average daily fat corrected milk (FCM) yield was 7.70 kg and 7.43 kg in group 1 and 2, respectively. The chemical composition of milk (protein, fat and total solids) also remained unaffected. The animals of both the groups gained 9-10 kg body weight which indicates that both the diets were nutritionally adequate and grain can be successfully replaced with DORB and molasses from the diet to sustain about 6-7 kg FCM production.

Study of the Enhancement of Magnetic Properties of NdFeB Materials Fabricated by Modified HDDR Process

  • Fu, Meng;Lian, Fa-zeng;Wang, jie-Ji;Pei, Wen-Ii;Chen, Yu-lan;Yang, Hong-cai
    • Journal of Magnetics
    • /
    • 제9권4호
    • /
    • pp.109-112
    • /
    • 2004
  • The HDDR (Hydrogenation-Disproportionation-Desorption-Recombination) process is a special method to produce anisotropic NdFeB powders for bonded magnet. The effect of the modified HDDR process on magnetic properties of $Nd_2Fe_{14}B$-based magnet with several composition $Nd_{11.2}Fe_{66.5-x}Co_{15.4}B_{6,8}Zr{0.1}Ga_x(x=0{\sim}1.0)$ and that of microelement Ga, disproportional temperature and annealing temperature on $_jH_c$, grain size were investigated in order to produce anisotropic powder with high magnetic properties. It was found that modified HDDR process is very effective to enhance magnetic properties and to fine grain size. The addition of Ga could change disproportionation character remarkably of the alloy and could improve magnetic properties of magnet powder. Increasing annealing temperature induces significant grain growth. And grain size produced by modified HDDR process is significantly smaller than those produced by conventional HDDR process.

비납계 (Na,K)NbO3-M(Cu,Nb)O3, (M = Ca, Sr, Ba) 압전 세라믹의 비정상 결정 성장 거동 비교 (Comparison of Abnormal Grain Growth Behavior of Lead-Free (Na,K)NbO3-M(Cu,Nb)O3, (M = Ca, Sr, Ba) Piezoelectric Ceramics)

  • 정승운;임지호;정한보;지성엽;최승곤;정대용
    • 한국재료학회지
    • /
    • 제30권7호
    • /
    • pp.343-349
    • /
    • 2020
  • NKN [(Na,K)NbO3] is a candidate lead-free piezoelectric material to replace PZT [Pb(Zr,Ti)O3]. A single crystal has excellent piezoelectric-properties and its properties are dependent of the crystal orientation direction. However, it is hard to fabricate a single crystal with stoichiometrically stable composition due to volatilization of sodium during the growth process. To solve this problem, a solid solution composition is designed (Na,K)NbO3-Ba(Cu,Nb)O3 and solid state grain growth is studied for a sizable single crystal. Ceramic powders of (Na,K)NbO3-M(Cu,Nb)O3 (M = Ca, Sr, Ba) are synthesized and grain growth behavior is investigated for different temperatures and times. Average normal grain sizes of individual specimens, which are heat-treated at 1,125 ℃ for 10 h, are 6.9, 2.8, and 1.6 ㎛ for M = Ca, Sr, and Ba, respectively. Depending on M, the distortion of NKN structure can be altered. XRD results show that (NKN-CaCuN: shrunken orthorhombic; NKN-SrCuN: orthorhombic; NKN-BaCuN: cubic). For the sample heat-treated at 1,125 ℃ for 10 h, the maximum grain sizes of individual specimens are measured as 40, 5, and 4,000 ㎛ for M = Ca, Sr, and Ba, respectively. This abnormal grain size is related to the partial melting temperature (NKN-CaCuN: 960 ℃; NKN-SrCuN: 971 ℃; NKN-BaCuN: 945 ℃).

Microstructure Change and Mechanical Properties in Binary Ti-Al Containing Ti3Al

  • Oh, Chang-Sup;Woo, Sang-Woo;Han, Chang-Suk
    • 한국재료학회지
    • /
    • 제26권12호
    • /
    • pp.709-713
    • /
    • 2016
  • Grain morphology, phase stability and mechanical properties in binary Ti-Al alloys containing 43-52 mo1% Al have been investigated. Isothermal forging was used to control the grain sizes of these alloys in the range of 5 to $350{\mu}m$. Grain morphology and volume fraction of ${\alpha}_2$ phase were observed by optical metallography and scanning electron microscopy. Compressive properties were evaluated at room temperature, 1070 K, and 1270 K in an argon atmosphere. Work hardening is significant at room temperature, but it hardly took place at 1070 K and 1270 K because of dynamical recrystallization. The grain morphologies were determined as functions of aluminum content and processing conditions. The transus curve of ${\alpha}$ and ${\alpha}+{\gamma}$ shifted more to the aluminum-rich side than was the case in McCullough's phase diagram. Flow stress at room temperature depends strongly on the volume fraction of the ${\alpha}_2$ phase and the grain size, whereas flow stress at 1070 K is insensitive to the alloy composition or the grain size, and flow stress at 1270 K depends mainly on the grain size. The ${\alpha}_2$ phase in the alloys does not increase the proof stress at high temperatures. These observations indicate that improvement of both the proof stress at high temperature and the room temperature ductility should be achieved to obtain slightly Ti-rich TiAl base alloys.