• Title/Summary/Keyword: grain complex

Search Result 244, Processing Time 0.029 seconds

An automated analysis tool for the IR absorption spectra of interstellar ices

  • Kim, Chul-Hwan;Lee, Jeong-Eun;Kim, Jaeyeong;Jeong, Woong-Seob
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.57.1-57.1
    • /
    • 2021
  • The icy mantles of interstellar grains are developed by the freeze-out of interstellar molecules and atoms onto grain surfaces. The ice molecules become more complex by surface chemistry induced directly by high energy photons or by the thermal energy diffused over heated grain surface. Therefore, the ice composition is an important tracer of physical conditions where the ices form. Ices have been studied via their absorption features against continuum sources, such as young stellar objects or evolved background stars, in infrared wavelengths. The Spitzer IRS was the most sensitive spectrometer for the observations of infrared ice absorption features. We has been developing an automated analysis tool for the Spitzer IRS spectra, especially for the 15 ㎛ CO2 bending mode. The 15 ㎛ CO2 absorption feature is very useful for the study of accretion process in star formation since its spectral shape varies with thermal condition of the dust grains. Eventually, this tool will cover the whole range of the Spitzer IRS spectrum (5~20 ㎛).

  • PDF

Maturity of the Crater Rim Walls as a function of the Crater Size

  • SIM, Chae Kyung;Kim, Sungsoo S.;Jeong, Minsup
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.45.3-46
    • /
    • 2015
  • Space weathering agents such as micrometeoroids and solar wind particles continuously age the uppermost regolith of the lunar surface by comminuting as well as darkening and reddening. Among several maturity indices, we investigate median grain size () and optical maturity (OMAT) of the crater rim walls. Crater rim wall is the most immature place among the impact crater features because the vertical mixing process by mass-movement can enhance the gardening of regolith and the supply of immature materials in the deeper layer to the surface. More than 140 simple and complex craters were considered. Both and OMAT values of the inner rim wall initially increase as the crater size increases until ~10-20 km, then decrease. This transition crater size happens to correspond to the transition diameter from simple to complex craters. For larger craters, i.e., complex craters, it is clear that the inner rim wall of the craters formed in recent eras tend to remain fresh and become mature along with time. For the simple crater case, smaller craters are more mature, which is opposite to the case of complex craters. This is thought to be because smaller craters become flattened more quickly, thus have smaller vertical mixing in the regolith due to mass-movement. We will also discuss on the maturity indices of the crater rim walls at high latitudes as a function of the position angle to see the latitude dependence of the space weathering process.

  • PDF

Microstructure and Mechanical Properties of AA1050/AA6061/AA1050 Complex Sheet Fabricated by Roll Bonding Process (냉간압연접합법에 의해 제조된 AA1050/AA6061/AA1050 층상 복합판재의 미세조직 및 기계적 성질)

  • Ahn, Moo-Jong;You, Hyo-Sang;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.26 no.7
    • /
    • pp.388-392
    • /
    • 2016
  • A cold roll-bonding process was applied to fabricate an AA1050/AA6061/AA1050 laminate complex sheet. Two AA1050 and one AA6061 sheets of 2 mm thickness, 40 mm width and 300 mm length were stacked up after surface treatment that included degreasing and wire brushing; material was then reduced to a thickness of 3 mm by one-pass cold rolling. The laminate sheet bonded by the rolling was further reduced to 1.2 mm in thickness by conventional rolling. The rolling was performed at ambient temperature without lubricant using a 2-high mill with a roll diameter of 210 mm. The rolling speed was 5.0 m/sec. The AA1050/AA6061/AA1050 laminate complex sheet fabricated by roll bonding was then hardened by natural aging T4) and artificial aging (T6) treatments. The microstructures of the as-roll bonded and the age hardened Al complex sheets were revealed by optical microscope observation; the mechanical properties were investigated by tensile testing and hardness testing. The strength of the as-roll bonded complex sheet was found to increase by 2.9 times compared to that value of the starting material. In addition, the hardness of the complex sheets increased with cold rolling for AA1050 and age-hardening treatment for AA6061, respectively. After heat treatment, both AA1050 and AA6061 showed typical recrystallization structures in which the grains were equiaxed; however, the grain size was smaller in AA6061 than in AA1050.

Sedimentary Facies and Geochemical Characteristics of Upper Intertidal Zone, Southwestern Coast, Korea (한반도 남서해안 상부조간대의 퇴적상 및 지구화학적 특성)

  • Kang, Suk-Bum;Koh, Young-Koo;Park, Bae-Young;Youn, Seok-Tai;Kim, Joo-Yong;Oh, Kang-Ho;Shin, Sang-Eun
    • Journal of the Korean earth science society
    • /
    • v.23 no.8
    • /
    • pp.722-735
    • /
    • 2002
  • In order to reveal sedimentary facies and geochemical characteristics on sediments distributed in upper intertidal zone, the southwestern coast of Korea, grain size and metal content analyses to the sediments were carried out. The grain size distribution of sediments shows very wide range from gravel to mud. The sediments are very well sorted to very poorly sorted and mostly positively skewed. Geochemical behavior of metals in the sediments is dependant on grain size, in part, but might be much controlled by complex submarine topography, highly varied tidal currents and surrounding land geology in the study area. Igeo (index of geoaccumulation) representing metal condensation in the sediments moderately/strongly polluted in Co and Cr and moderately polluted in Cu and Ni. But notable metal condensations are not found in the study area. So, it might be interpreted that grain size and metal content distribution tendencies in the sediments are considerably influenced by complex submarine topography, highly varied tidal currents and surrounding land geology.

Low Temperature Nanopowder Processing for Flexible CIGS Solar Cells (플렉시블 CIGS 태양전지 제조를 위한 저온 나노입자공정)

  • Park, Chinho;Farva, Umme;Krishnan, Rangarajan;Park, Jun Young;Anderson, Timothy J.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.61.1-61.1
    • /
    • 2010
  • $CuIn_{1-x}-GaxSe_2$ based materials with direct bandgap and high absorption coefficient are promising materials for high efficiency hetero-junction solar cells. CIGS champion cell efficiency(19.9%, AM1.5G) is very close to polycrystalline silicon(20.3%, AM1.5G). A reduction in the price of CIGS module is required for competing with well matured silicon technology. Price reduction can be achieved by decreasing the manufacturing cost and by increasing module efficiency. Manufacturing cost is mostly dominated by capital cost. Device properties of CIGS are strongly dependent on doping, defect chemistry and structure which in turn are dependent on growth conditions. The complex chemistry of CIGS is not fully understood to optimize and scale processes. Control of the absorber grain size, structural quality, texture, composition profile in the growth direction is important to achieving reliable device performance. In the present work, CIS nanoparticles were prepared by a simple wet chemical synthesis method and their structural and optical properties were investigated. XRD patterns of as-grown nanopowders indicate CIS(Cubic), $CuSe_2$(orthorhombic) and excess selenium. Further, as-grown and annealed nanopowders were characterized by HRTEM and ICP-OES. Grain growth of the nanopowders was followed as a function of temperature using HT-XRD with overpressure of selenium. It was found that significant grain growth occurred between $300-400^{\circ}C$ accompanied by formation of ${\beta}-Cu_{2-x}Se$ at high temperature($500^{\circ}C$) consistent with Cu-Se phase diagram. The result suggests that grain growth follows VLS mechanism which would be very useful for low temperature, high quality and economic processing of CIGS based solar cells.

  • PDF

Characteristics and Paleoceanographic Implications of Grain-size Distributions of Biogenic Components in Sediments from the South Korea Plateau (East Sea) (동해 남한국대지 퇴적물의 생물기원 성분 입도 분포의 특성과 고해양학적 의미)

  • Jang, Jun-Ho;Bahk, Jang-Jun;Kim, Eun-Jung;Um, In-Kwon
    • Ocean and Polar Research
    • /
    • v.42 no.3
    • /
    • pp.249-261
    • /
    • 2020
  • This study details grain-size distributions (GSDs) of carbonate and biogenic opal fractions of the sediments retrieved from the South Korea Plateau in the East Sea and draws paleocanographic implications from them. The opal-fraction GSDs show fine modes of 10.3 ㎛ and coarse modes of 102.5 ㎛ on average. The fine-mode grains of opal fractions mainly consist of small diatoms and radiolarians including their broken frustules, while the coarse-mode grains are mostly comprised of large warm-water diatoms and radiolarians. Significant positive correlation between opal contents and abundances of the coarse-mode GSDs in the total GSDs suggests that the abundances of the coarse-mode GSDs were controlled by the increased surface productivity of warm-water diatoms during interglacial stages. The carbonate-fraction GSDs show fine modes of 2.4 ㎛ and coarse modes of 99.1 ㎛ on average. The fine-mode grains mainly consist of coccolithophores, while the coarse-mode grains are mostly comprised of intact or broken planktonic foraminifera. The abundances of coarse-mode and fine-mode GSDs were not correlated with carbonate contents, suggesting a complex control exerted by both the degree of carbonate dissolution and the productivity of coccolithophores on the carbonate-fraction GSDs.

The Power Loss Characteristics of Mn-Zn Ferrites at MHz Region with Sintering Condition (소성조건에 따른 MHz 대역의 Mn-Zn ferrite 전력손실 특성)

  • Suh J.J.;Song B.M
    • Resources Recycling
    • /
    • v.12 no.6
    • /
    • pp.26-31
    • /
    • 2003
  • The power loss characteristics of Mn-Zn ferrite were observed with the sintering temperature. In case of $1150 ^{\circ}C$ sintering, the core loss increased with measuring temperature, and does not have minimum value at the point where the magnetocrystalline anisotropy be 'zero'. This reason mainly due to the change of core loss mechanism with grain size which affects residual loss. The grain size and sintered density slightly increased with equilibrium oxygen partial pressure at$ 1150 ^{\circ}C$ sintering. The resistivity and initial permeability showed no significance with atmosphere, these results due to complex effect of $Fe^{2+}$ concentration and microstructure change. The core loss at $100^{\circ}C$ decreased as the equilibrium oxygen partial pressure increased.e increased.

Effects of Yttria and Calcia Co-Doping on the Electrical Conductivity of Zirconia Ceramics

  • Lee, Jong-Sook;Shin, Dong-Kyu;Choi, Byung-Yun;Jeon, Jung-Kwang;Jin, Sung-Hwan;Jung, Kwon-Hee;An, Pyung-An;Song, Sun-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.12
    • /
    • pp.655-659
    • /
    • 2007
  • Zirconia polycrystals co-doped with x mol% CaO and (10-x) mol% $Y_2O_3$ were prepared by solid state reaction method. The compositions were chosen for nominally the same oxygen vacancy concentration of 5 mol%. X-ray diffraction patterns indicated the formation of cubic zirconia by heat treatment at $1600^{\circ}C$. Impedance spectroscopy was applied to deconvolute the bulk and grain boundary response. Electrical conductivity was measured using the complex impedance technique from 516 to 874 K in air. Maximum conductivity was exhibited by the composition with equal amounts of CaO and $Y_2O_3$, which may be ascribed to the smaller degree of defect-interactions in that composition due to the competition of different ordering schemes between the two systems. When compared to the composition containing $Y_2O_3$ only, co-doping of CaO increases the grain boundary resistance considerably. The activation energy of grain and grain boundary conductivity was 1.1 eV and 1.2 eV, respectively, with no appreciable dependence on dopant compositions.

DEVELOPMENT of CONTINUOUS GRAIN DRYER

  • Kim, Y.H.;Cho, Y.K.;Cho, K.H.;Keum, D.H.;Han, C.S.;Han, J.K.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.396-404
    • /
    • 2000
  • Post harvest processes for rice include drying, storage and processing. Drying has a great effect on the quality of the grain. The existing rice centers are with the ill equipped, especially with drying and storage facilities. The rice harvesting has bully mechanized, a large volume of rice with high moisture content are taken to the rice processing complex(RPC). Three, the need for drying and storage facilities becomes more urgent. At present the daily drying capacity of RPC can't exceed over 40~50 M/T. Therefore new technology and facilities for a high quality and main efficient drying should be introduced one such technology is the continuous flow drying system. This research, aims to test performance efficiency the mixed continuous flow grain dryer was whose daily drying capacity is 100 M/T. The results of the performance tests of the dryer are shown as follows; (1) The temperature distribution of the drying modules were measured by a temperature recorder. The fifth module showed the highest value, followed by the seventh and the third. (2) When the intake air temperature was $55^{circ}C$, the drying rates were 1.7 and 2.6%, wb/pass in the exhaust temperatures of 20 and $22^{circ}C$. And when the intake air temperature was $60^{circ}C$, the drying rates were 1.7 and 2.3%, wb/pass in the exhaust temperatures of 22 and $25^{circ}C$. (3) The average increased rate of cracked grains after the drying process was 0.7% which is below the tolerance limit (2.0%) of the continuous grain dryer.

  • PDF

Effects of CaCO3 on the Defects and Grain Boundary Properties of ZnO-Co3O4-Cr2O3-La2O3 Ceramics (ZnO-Co3O4-Cr2O3-La2O3 세라믹스의 결함과 입계 특성에 미치는 CaCO3의 영향)

  • Hong, Youn-Woo;Ha, Man-Jin;Paik, Jong-Hoo;Cho, Jeong-Ho;Jeong, Young-Hun;Yun, Ji-Sun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.307-312
    • /
    • 2018
  • Liquid phases in ZnO varistors cause more complex phase development and microstructure, which makes the control of electrical properties and reliability more difficult. Therefore, we have investigated 2 mol% $CaCO_3$ doped $ZnO-Co_3O_4-Cr_2O_3-La_2O_3$ (ZCCLCa) bulk ceramics as one of the compositions without liquid phase sintering additive. The results were as follows: when $CaCO_3$ is added to ZCCLCa ($644{\Omega}cm$) acting as a simple ohmic resistor, CaO does not form a secondary phase with ZnO but is mostly distributed in the grain boundary and has excellent varistor characteristics (high nonlinear coefficient ${\alpha}=78$, low leakage current of $0.06{\mu}A/cm^2$, and high insulation resistance of $1{\times}10^{11}{\Omega}cm$). The main defects $Zn_i^{{\cdot}{\cdot}}$ (AS: 0.16 eV, IS & MS: 0.20 eV) and $V_o^{\bullet}$ (AS: 0.29 eV, IS & MS: 0.37 eV) were found, and the grain boundaries had 1.1 eV with electrically single grain boundary. The resistance of each defect and grain boundary decreases exponentially with increasing the measurement temperature. However, the capacitance (0.2 nF) of the grain boundary was ~1/10 lower than that of the two defects (~3.8 nF, ~2.2 nF) and showed a tendency to decrease as the measurement temperature increased. Therefore, ZCCLCa varistors have high sintering temperature of $1,200^{\circ}C$ due to lack of liquid phase additives, but excellent varistor characteristics are exhibited, which means ZCCLCa is a good candidate for realizing chip type or disc type commercial varistor products with excellent performance.