• Title/Summary/Keyword: grain complex

Search Result 240, Processing Time 0.027 seconds

PREDICTING MALTING QUALITY IN WHOLE GRAIN MALT COMPARED TO WHOLE GRAIN BARLEY BY NEAR INFRARED SPECTROSCOPY

  • Black, Cassandra K.;Panozzo, Joseph F.
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1618-1618
    • /
    • 2001
  • Predicting quality traits using near infrared (NIR) spectroscopy on whole grain samples has gained wide acceptance as a non-destructive, rapid and cost effective technique. Barley breeding programs throughout southern Australia currently use this technology as a tool for selecting malting quality lines. For the past 3 years whole grain barley calibrations have been developed at VIDA to predict malting quality traits in the early generation selections of the breeding program. More recently calibrations for whole grain malt have been developed and introduced to aid in selecting malted samples at the mid-generation stage for more complex malting quality traits. Using the same population set, barley and malt calibrations were developed to predict hot water extracts (EBC and IoB), diastatic power, free $\alpha$-amino nitrogen, soluble protein, wort $\beta$-glucan and $\beta$-glucanase. The correlation coefficients between NIR predicted values and laboratory methods for malt were all highly significant ($R^2$ > 0.84), whereas the correlation coefficients for the barley calibrations were lower ($R^2$ > 0.57) but still significant. The magnitude of the error in predicting hot water extract, diastatic power and wort $\beta$-glucan using whole grain malt was reduced by 50% when compared with predicting the same trait using whole grain barley. This can be explained by the complex nature of attempting to develop calibrations on whole grain barley utilizing malt data. During malting, the composition of barley is modified by the action of enzymes throughout the steeping and germination stages and by heating during the kilning stage. Predicting malting quality on whole grain malt is a more reliable alternative to predicting whole grain barley, although there is the added expense of micro-malting the samples. The ability to apply barley and malt calibrations to different generations is an advantage to a barley breeding program that requires thousands of samples to be assessed each year.

  • PDF

주기적(週期的) 반복하중(反復荷重)을 받는 벼의 복소(複素)컴프라이언스 (Complex Compliance of Rough Rice Kernel under Cyclic Loading)

  • 김만수;라우정;박종민
    • Journal of Biosystems Engineering
    • /
    • 제17권1호
    • /
    • pp.79-90
    • /
    • 1992
  • Viscoelastic characteristics of agricultural products may be determined through three basic tests ; stress relaxation, creep, and dynamic test. Considering the changeability of living materials, dynamic test in which information is derived in a relatively short time appears to be highly desirable, in which either cyclic stress or cyclic strain is imposed and the remaining quantity (strain or stress) is measured. The periodically varying stress will also result in periodically varying strain which in a viscoelastic material should theoretically be out of phase with the stress, because part of the energy subjected to sample is stored in the material as potential energy and part is dissipated as heat. This behavior results in a complex frequency-dependent compliance denoted by J($i{\omega}$). The complex compliance and therefore the storage compliance, the loss compliance, the phase angle, and percent energy loss for the sample should be obtainable with a given static viscoelastic property of the material under static load. The complex compliance of the rough rice kernel were computed from the Burger's model describing creep behavior of the material which were obtained in the previous study. Also, the effects of cyclic load and moisture content of grain on the dynamic viscoelastic behavior of the samples were analyized. The results obtained from this study were summarized as follows ; 1. The storage compliance of the rough rice kernel slightly decreased with the frequency applied but at above the frequency of 0.1 Hz it was nearly constant with the frequency, and the loss compliance of the sample very rapidly decreased with increase in the frequency on those frequency ranges. 2. It was shown that the storage compliance and the loss compliance of the sample increased with increase in grain moisture content. Effect of grain moisture content on the storage compliance of the sample was highly significant than effect of the frequency applied, but effect of the frequency on the loss compliance of the sample was more significant than effect of grain moisture content. 3. In low moisture content, the percent energy loss of Japonica-type rough rice was much higher than that of Indica-type rough rice, but, in high moisture content, vice versa.

  • PDF

초미립의 탄화 텅스텐-코발트와 탄화 텅스텐-니켈 복합분말의 제조 (Production of the ultra fine-composite powders of WC-Co and WC-Ni)

  • 김병재;윤병하
    • 한국표면공학회지
    • /
    • 제26권2호
    • /
    • pp.87-107
    • /
    • 1993
  • The grain size of the final products of WC-Co and WC-Ni composite powders is dependent on the size of the starting material and the conditions employed for the reduction and carburization. APT-Co and -Ni com-plex salts were prepared by the substitution reaction between ammonium ions in APT and the metal ions in Co(NO3)2 and Ni(NO3)2 solutions of different concentrations(0.1 to 0.7M) at $50^{\circ}C$ and the grain sizes of the com-plex salts was $0.54~0.76\mu\textrm{m}$. The complex which calcined the complex salts at $700^{\circ}$~80$0^{\circ}C$ for 60min. were 0.2~0.5$\mu\textrm{m}$. W-Co($5.92^{\circ}C$) and -Ni(6.95%) powders which reduced the complex oxides with H2d atmo-sphere(flow rate;600cc/min.) at $700^{\circ}$~$800^{\circ}C$ for 60min. were $0.5~0.6\mu\textrm{m}$. The mean grain sizes of WC-Co and WC-Ni composite powders which carburized both complex metals of W-Co and W-Ni at $800^{\circ}C$ for 60min. were $0.5~0.6\mu\textrm{m}$, and take place the coarsening of the grain above $800^{\circ}C$ and the optmium ratio of C3H8 and H2 was 0.2 for the control of the free carbon. The effect of Co contents on the particle sizes decreased from 0.4 to $0.25\mu\textrm{m}$ with increasing the content from 2.0 to 7.6w%. The activation energies on the reductions of oxides and the formations of carbides were as follows ; W-Co : Q = 8.7 kcal/mole, W-Ni : Q = 8.1 kcal/mole, WC-Co pow-der : Q = 17.8 kcal/mole, WC-Ni powder : Q = 16.6 kcal/mole.

  • PDF

ARB공정에 따른 초미세립 AA1050/AA6061 복합알루미늄 합금 판재의 미세조직 발달 (Microstructural Evolution of Ultrafine Grained AA1050/AA6061 Complex Aluminum Alloy Sheet with ARB Process)

  • 이성희
    • 한국재료학회지
    • /
    • 제23권1호
    • /
    • pp.41-46
    • /
    • 2013
  • The microstructural evolution of AA1050/AA6061 complex aluminum alloy, which is fabricated using an accumulative roll-bonding (ARB) process, with the proceeding of ARB, was investigated by electron back scatter diffraction (EBSD) analysis. The specimen after one cycle exhibited a deformed structure in which the grains were elongated to the rolling direction for all regions in the thickness direction. With the proceeding of the ARB, the grain became finer; the average grain size of the as received material was $45{\mu}m$; however, it became $6.3{\mu}m$ after one cycle, $1.5{\mu}m$ after three cycles, and $0.95{\mu}m$ after five cycles. The deviation of the grain size distribution of the ARB processed specimens decreased with increasing number of ARB cycles. The volume fraction of the high angle grain boundary also increased with the number of ARB cycles; it was 43.7% after one cycle, 62.7% after three cycles, and 65.6% after five cycles. On the other hand, the texture development was different depending on the regions and the materials. A shear texture component {001}<110> mainly developed in the surface region, while the rolling texture components {011}<211> and {112}<111> developed in the other regions. The difference of the texture between AA1050 and AA6061 was most obvious in the surface region; {001}<110> component mainly developed in AA1050 and {111}<110> component in AA6061.

Determination of Equivalent Roughness for Estimating Flow Resistance in Stabled Gravel-Bed River: I. Theory and Development of the Model

  • Park, Sang-Woo;Lee, Sin-Jae;Jang, Suk-Hwan
    • 한국환경과학회지
    • /
    • 제17권11호
    • /
    • pp.1203-1210
    • /
    • 2008
  • Flow resistance in a natural stream is caused by complex factors, such as the grains on the bed, vegetation, and bed-form, reach profile. Flow resistance in a generally stable gravel bed stream is due to protrudent grains from bed. Therefore, the flow resistance can be calculated by equivalent roughness in gravel bed stream, but estimation of equivalent roughness is difficult because nonuniform size and irregular arrangement of distributed grain on natural stream bed. In previous study, equivalent roughness is empirically estimated using characteristic grain size. However, application of empirical equation have uncertainty in stream that stream bed characteristic differs. In this study, we developed a model using an analytical method considering grain diameter distribution characteristics of grains on the bed and also taking into account flow resistance acting on each grain. Also, the model consider the protrusion height of grain.

Effect of Debinding Conditions on the Microstructure of Sintered Pb(Mg1/3Nb2/3)O3-PbTiO3

  • Yun Jung-Yeul;Jeon Jae-Ho;L.Kang Suk-Joong
    • 한국분말재료학회지
    • /
    • 제12권4호
    • /
    • pp.261-265
    • /
    • 2005
  • In order to fabricate complex-shaped polycrystalline ceramics by sintering, organic binders are usually pre-mixed with ceramic powders to enhance the formability during the shape forming process. These organic binders, however, must be eliminated before sintering so as to eliminate the possibilities of poor densification and unusual grain growth during sintering. The present work studies the effect of binder addition on grain growth behavior during sintering of $92(70Pb(Mg_{1/3}Nb_{2/3})O_3-30PbTiO_3))$-8PbO(mol%) piezoelectric ceramics. The microstructures of the sintered samples were examined for various heating profiles and debinding schedules of the binder removal process. Addition of Polyvinyl butyral(PVB) binder promoted abnormal grain growth especially in incompletely debinded regions. Residual carbon appears to change the grain shape from comer-rounded to faceted and enhance abnormal grain growth.

Nb이 첨가된 $BaTiO_3$ 세라믹스의 복소 임피던스 해석 (Complex Impedance Analysis of Nb-Doped Barium Titanate Ceramics)

  • 조경호;남효덕;이희영
    • 한국세라믹학회지
    • /
    • 제31권9호
    • /
    • pp.1012-1220
    • /
    • 1994
  • BaTiO3 ceramics doped with 0.1 to 4.0 mol% Nb2O5 were prepared by conventional solid stage sintering process, so as to investigate the effect of the amount of Nb2O5 on the dielectric properties and complex impedance patterns of barium titanates. From the measurement of capacitance, we found that the dielectric constant of BaTiO3 samples with 1 mol% or more Nb2O5 remained approximately constant around room temperature with values higher than 2500. In this paper, the effect of impurity content as well as temperature on complex impedance patterns was discussed in detail. In particular, the grain and grain boundary behavior of samples which showed PTCR characteristics was discussed in terms of measuring temperature.

  • PDF

$BaTiO_3$계 PTC 재료에서 입계 modifier의 역할 (The role of grain boundary modifier in $BaTiO_3$ system for PTCR device)

  • 이준형;조상희
    • 한국재료학회지
    • /
    • 제3권5호
    • /
    • pp.553-561
    • /
    • 1993
  • 본 연구에서는 입계의 성질을 이용한 PTCR 재료에 입계 modifier로서 $Bi_2O_3$를 첨가하고 입계의 미세구조와 결함농도를 변화시켜 이에 따른 소결 및 전기적 특성변화를 TMA, XRD, 복합 임피던스방법 등을 이용하여 해석하였다. 실험 결과 Y이 도우핑된 $BaTiO_3$PTCR 재료에 $Bi_2O_3$를 첨가하였을때 약 0.1mol%까지 고용이 되는 것으로 밝혀졌다. $Bi_2O_3$를 고용한계 이하로 첨가시에는 생성되는 vacancy등의 결함으로 말미암아 $Y-BaTiO_3$의 치밀화가 촉진되었으나, 그 이상 첨가하면 치밀화 뿐만 아니라 결정립 성장도 억제되었다. $Bi_2O_3$의 첨가량에 따라 계내에 존재하는 각 이온의 반경, 결함 반응식 및 격자 탄성 변형 에너지 등을 고려하면 $Y-BaTiO_3$결정립 내부에 Ba와 Ti vacancy가 동시에 생길 수 있어 고온저항이 높아짐을 알 수 있었다. BN은 $BaTiO_3$에 고용이 되지 않는 것으로 밝혀졌으며 $B_2O_3$를 주성분으로한 액상형성으로 인하여 저온에서의 급격한 치밀화가 관찰되었다. 또 Ba-Y-Ti-B-O의 비정질 상이 tripie junction에 존재함으로써 상온저항이 크게 변화하였으며, PTCR jump도 높아졌다.

  • PDF

질소 용출속도가 다른 피복요소를 혼합한 완효성비료 시용이 벼 생육 및 쌀 품질에 미치는 영향 (Effects of Application of Controlled Release Fertilizer Blended with Different Nitrogen Releasing Latex Coated Ureas on Rice Growth and Grain Quality)

  • 이동욱;박기도;박창영;강위금;손일수;박성태
    • 한국작물학회지
    • /
    • 제52권3호
    • /
    • pp.311-319
    • /
    • 2007
  • 본 시험은 질소 용출 속도가 다른 3가지 피복요소가 포함된 완효성 복합비료를 관행 요소시비량의 80 및 100% 수준으로 시용하여 벼 건답직파 및 이앙재배에서 벼 생육, 수량 및 질소이용율을 알아보고 쌀의 품질에 미치는 영향을 조사하였다. 1. LCU의 제형별 $20^{\circ}C$$30^{\circ}C$에서 수중 용출 속도는 LCU40 > LCU80 > LCU혼합 > LCU100 순으로 빨랐다. 2. 벼 생육 및 수량은 건답직파 및 이앙재배 모두에서 LCU-복비100% > LCU-복비80% > 관행 순으로 높았다. 3. LCU-복비 시용에 의한 질소이용율은 요소시용에 비해 건답직파재배에서는 $4{\sim}7%$, 이앙재배에서는 $11{\sim}13%$ 향상되었으며, 표준시비량의 20%를 감비한 LCU-복비 80% 시용이 단위시비질소의 생산성이 가장 높았다. 4. 단백질 함량은 건답직파 및 이앙재배의 무질소구에서 6.3 및 6.6%로 가장 낮았고, 비료 처리간에는 LCU-복비 80% 시용구에서 각각 6.5 및 6.7%로 관행 요소시용 7.3 및 7.4%에 비해 낮았다. 5. 아밀로즈 함량 및 Mg/K 비는 모든 처리간에 유의성이 없었다. 또한 쌀의 호화특성 중 최고점도 및 강하점도는 LCU-복비 시용에 의해 다소 높았지만 통계적인 유의성은 없었다.

Study for grain-filling of rice using 13C labeling flow-metabolome analysis

  • Okamura, Masaki;Hirai, Masami Yokota;Sawada, Yuji;Okamoto, Mami;Arai-Sanoh, Yumiko;Yoshida, Hiroe;Mukouyama, Takehiro;Adachi, Shunsuke;Fushimi, Erina;Yabe, Shiori;Nakagawa, Hiroshi;Kobayashi, Nobuya;Kondo, Motohiko
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.59-59
    • /
    • 2017
  • Rice (Oryza sativa L.) is the most important crop and its yield must be improved to feed the increasing global population. Recently developed high-yielding varieties with extra-large sink capacity often have a problem in unstable grain-filling. Therefore, understanding limiting factors for improving grain-filling and controlling them are essential for further improvement of rice grain yield. However, since grain-filling rate was determined by complex sink-source balance, the ability of grain-filling was very difficult to evaluate. Source ability for 'grain' was not only determined by the ability of carbon assimilation in leaves, but also that of carbon translocation from leaves to panicles. Sink strength was determined by the complex carbon metabolism from sucrose degradation to starch synthesis. Hence, to evaluate the grain-filling ability and determine its regulatory steps, the whole picture of carbon flow from photosynthesis at leaves to starch synthesis at grains must be revealed in a metabolite level. In this study, the yield and grain growth rate of three high-yielding varieties, which show high sink capacity commonly, were compared. Momiroman showed lower grain filling rate and slower grain growth rate than the other varieties, Hokuriku 193 and Tequing. To clarify the limiting point in the carbon flow of Momiroman, $CO_2$ labeled by stable isotope ($^{13}C$) was fed to three varieties during ripening period. The ratio of $^{13}C$ left in the stem was higher in Momiroman 24 hours after feeding, suggesting inefficient carbon translocation of Momiroman. More interestingly, $^{13}C$ translocation from soluble fraction to insoluble one in the grain seemed to be slower in Momiroman. To get the further insight in a metabolite level, we are now trying the $^{13}C$ labeling metabolome analysis in the developing grains.

  • PDF