• 제목/요약/키워드: grain angles

검색결과 57건 처리시간 1.358초

Evaluation of Failure Theories to Determine the Wood Strength Variation with Grain Slope

  • Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • 제37권5호
    • /
    • pp.465-473
    • /
    • 2009
  • Three failure theories were studied to evaluate the wood strength variation with grain slope. Maximum stress theory, Tsai-Hill theory and Hankinson formula were presented to hypothesize the failure of wood according to grain slope to loading direction. Red pine and Japanese larch were used as materials to simulate failure strength prediction with grain slope. Calculation of strength results was that the strength of wood drops rapidly between parallel to grain orientation (0 degree) and 15 degree grain orientation. The strength of wood with grain orientation were somewhat different at small grain angles among failure theories, and this tendency was due to tension and compression distinction, and shear accounting in each theories. For the above 45 degree grain orientation, the predicted failure strength of wood with grain variation were very close in each failure theories and were useful in assessing failure strength of wood. The applicable these theories should be considered that the wood has different behavior in tension and compression, and this lead to different strength at small grain angles in each theories. Furthermore, reconsideration is needed to assess the failure strength of wood at small grain angles in Hankinson formula and further studies are necessary to accounting for shear behavior at small grain angles.

박막내 결정립 배열의 열적 불안정성1)-응집 모델 (Stability of the Grain Configurations of Thin Films-a Model for Agglomeration)

  • 나종주;박중근
    • 연구논문집
    • /
    • 통권27호
    • /
    • pp.183-200
    • /
    • 1997
  • We have calculated the energy of three distinct grain configurations, namely completely connected, partially connected and unconnected configurations, evolving during a spheroidization of polycrystalline thin film by extending a geometrical model due to Miller et al. to the case of spheroidization at both the surface and film-substrate interface. "Stabilitl" diagram defining a stable region of each grain configuration has been established in terms of the ratio of grain size to film thickness vs. equilibrium wetting or dihedral angles at various interface energy conditions. The occurrence of spheroidization at the film-substrate interface significantly enlarges the stable region of unconnected grain configuration thereby greatly facilitating the occurrence of agglomeration. Complete separation of grain boundary is increasingly difficult with a reduction of equilibrium wetting angle. The condition for the occurrence of agglomeration differs depending on the equilibrium wetting or dihedral angles. The agglomeration occurs, at low equilibrium angles, via partially connected configuration containing stable holes centered at grain boundary vertices, whereas it occurs directly via completely connected configuration at large equilibrium angles except for the case having small surface and/or film-substrate interface energy. The initiation condition of agglomeration is defined by the equilibrium boundary condition between the partially connected and unconnected configurations for the former case, whereas it can, for the latter case, largely deviate from the equilibrium boundary condition between the completely connected and unconnected configurations because of the presence of a finite energy barrier to overcome to reach the unconnected grain configuration.

  • PDF

EBSD를 이용한 1, 2차 용융흔 결정립의 방위 비교 분석 (The Orientation Comparison of the Primary and Secondary Beads Grain by EBSD)

  • 박광묵;방선배;양성채
    • 한국전기전자재료학회논문지
    • /
    • 제30권11호
    • /
    • pp.728-733
    • /
    • 2017
  • Herein, for the quantitative analysis of the arc beads related to electric fire, we used electron backscatter diffraction (EBSD), a measuring device for grain orientation of materials, we compared and analyzed the surface texture of primary and secondary beads according to the difference in cooling rate at ambient temperature. This analysis revealed that the primary beads showed similar distribution at both low and high angles, while the secondary beads showed a higher distribution at low angles than at high angles. Thus, EBSD can be used for quantitative analysis of the beads and can be applied to identify beads in the future.

경사진 <100> 결정립계의 계면분리 거동에 관한 분자동역학 전산모사 (Decohesion of <100> Symmetric Tilt Copper Grain Boundary by Tensile Load Using Molecular Dynamics Simulation)

  • 뉴엔타오;조맹효
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2009년도 정기 학술대회
    • /
    • pp.38-41
    • /
    • 2009
  • Debonding behavior of symmetric tilt bicrystal interfaces with <100> misorientation axis is investigated through molecular dynamics simulations. FCC single crystal copper is considered in each grain and the model is idealized as a grain boundary under mechanical loading. Embedded-Atom Method potential is chosen to calculate the interatomic forces between atoms. Constrained tensile deformations are applied to a variety of misorientation angles in order to estimate the effect of grain boundary angle on local peak stress. A new parameter of symmetric grain-boundary structure is introduced and refines the correlation between grain boundary angle and local peak stress.

  • PDF

분자동력학을 이용한 나노 리소그래피 공정의 결정립계의 변형 거동 연구 (Study on the Deformation Characteristics of Grain Boundary in Nanolithography Process)

  • 김찬일;현상일;김영석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.326-331
    • /
    • 2007
  • Large-scale molecular dynamics simulations are performed to verify the deformation characteristics of grain boundaries in nanolithography process. The copper substrate made of 200,000 atoms is constructed by two grains in different crystal orientations using dynamic relaxation method. The grain boundary is located in the middle of the substrate with $45\sim135$ degree angles. The plowing tip is made of diamond-like-carbon atoms in a variety of shapes. In the simulations, the generation, propagation, and accumulation of dislocations are observed inside the substrate. From the numerical results, we address the dynamic behavior of the grain boundaries as well as the frictional characteristics in terms of the morphology of initial grain boundaries.

  • PDF

알루미나 쌍결정에서 조성변화에 의한 Zigzag Migration (Chemically Induced Zigzag Migration in Alumina Bicrystals)

  • 백용균;강석중
    • 한국세라믹학회지
    • /
    • 제32권10호
    • /
    • pp.1117-1122
    • /
    • 1995
  • The effect of grain boundary structure on zigzag migrtion has been studied. Five kinds of a(2110)-m(1010) diffusion couples with different twist angles by 30$^{\circ}$from a [0001] common direction of each plane were prepared. When chromia (Cr2O3) was added to the diffusion couples by a vapor phase, zigzag migration of the grain boundary occurred. The fraction of zigzag migration did not essentially vary with the twist angle, but the magnitude and migration distance of individual migrating segment varied. The variation of CIGM morphology thus appears to result from the change in grain boundary mobility due to microscopic deviation of grain boundary structure out of a macroscopic grain boundary orientation.

  • PDF

Computer simulation study for the effect of potential energy on the behavior of grain boundary using Molecular dynamics

  • Choi, Dong-Youl;Kim, Hyun-Soo;Kim, Young-Suk;Tomita, Yoshihiro
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.173-178
    • /
    • 1999
  • In this study MD simulations have been performed to observe the behavior of a grain boundary in an a-Fe plate under 2-dimensional loading. In MD simulation the acceleration of every molecule can be achieved from the potential energy and the force interacting between each molecule and the integration of the motion equation by using Verlet method gives the displacement of each molecule. Initially four a-Fe rectangular plates having different misorientation angles of grain boundary were modeled by using the Johnson potential and Morse potential We compared the potential energy of the grain boundary system with that of the perfect structure model. Also we could obtain the width of the grain boundary by investigating the local potential energy distribution. The tensile loading for each grain boundary models was applied and the behavior of grin boundary was studied. From this study it was clarified that in the case using Johnson potential the obvious fracture mechanism occurs along the grain boundary in the case of Morse potential the diffusion of the grain boundary appears instead of the grain boundary fracture.

  • PDF

Determining Shear Modulus of 3-ply Laminated Veneer Lumber by Uniaxial Tension Test

  • Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • 제41권5호
    • /
    • pp.425-431
    • /
    • 2013
  • Estimation equations of shear modulus in the plane of laminated veneer lumber (LVL) were compared each other through uniaxial tension test results. The equations - basic elastic equation in the dimensional orthotropic case, Hankinson's formula and empirical equation proposed by Salikis and Falk, were applied to determine the elastic constants at various angles to the grain, which were needed for determination of shear modulus. Tensile elastic modulus of LVL predicted from these equations were compared with test data to evaluate the accuracy of the equation. Tensile elastic modulus rapidly decreased at orientations between 0 and 15 degrees and elastic modulus at grain angles of 15, 30, and 45 degrees overestimated in the presented equations. But the proposed equation by Salikis and Falk showed better prediction, especially at 30, and 45 degrees. This proposed formula would be more useful and practical for estimating of shear modulus of wood composites like LVL to minimize the effect of Poisson's ratio term.

Effects of seed orientation on the growth behavior of single grain REBCO bulk superconductors

  • Lee, Hee-Gyoun
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제19권2호
    • /
    • pp.9-13
    • /
    • 2017
  • This study presents a simple method to control the seed orientation which leads to the various growth characteristics of a single grain REBCO (RE: rare-earth elements) bulk superconductors. Seed orientation was varied systematically from c-axis to a-axis with every 30 degree rotation around b-axis. Orientations of a REBCO single grain was successfully controlled by placing the seed with various angles on the prismatic indent prepared on the surface of REBCO powder compacts. Growth pattern was changed from cubic to rectangular when the seed orientation normal to compact surface was varied from c-axis to a-axis. Macroscopic shape change has been explained by the variation of the wetting angle of un-reacted melt depending on the interface energy between $YBa_2Cu_3O_{7-y}$ (Y123) grain and melt. Higher magnetic levitation force was obtained for the specimen prepared using tilted seed with an angle of 30 degree rotation around b-axis.

The Ascendancy of Grain Configuration on the Starting Transient of Solid Rockets

  • V.R. Sanal Kumar;Kim, Heuy-Dong;B.N. Raghunandan;Toshiaki Setoguchl
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.550-559
    • /
    • 2004
  • Theoretical studies have been carried out to examine the influence of the grain geometry-dependent driving forces, which control the internal flow pattern of solid rockets. Numerical studies have been executed with the help of a two-dimensional code. This code solves standard k-omega turbulence equations using the coupled second order implicit unsteady formulation. It has been concluded that the grain port divergence angles have significant leverage on the formation of recirculation bubbles leading for pressure oscillations, flow separation and reattachment. In solid rockets flow reattachment will favour secondary ignition and that will add to the complexity of the starting transient prediction.

  • PDF