• Title/Summary/Keyword: gradual increasing

Search Result 244, Processing Time 0.025 seconds

Synthesis of Silicon-Carbon by Polymer Coating and Electrochemical Properties of Si-C|Li Cell (고분자 도포를 이용한 실리콘-탄소의 합성 및 Si-C|Li Cell의 전기화학적 특성)

  • Doh, Chil-Hoon;Jeong, Ki-Young;Jin, Bong-Soo;An, Kay-Hyeok;Min, Byung-Chul;Choi, Im-Goo;Park, Chul-Wan;Lee, Kyeong-Jik;Moon, Seong-In;Yun, Mun-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.3
    • /
    • pp.107-112
    • /
    • 2006
  • Si-C composites were prepared by the carbonization of silicon powder covered by polyaniline(PAn). Physical and electrochemical properties of the Si-C composites were characterized by the particle size analysis, X-ray diffraction technique, scanning electron microscope, and electrochemical test of battery. The average particle size of the Si was increased by the coating of PAn and somewhat reduced by the carbonization to give silicone-carbon composites. XRD analysis' results were confirmed co-existence of crystalline silicon and amorphous-like carbon. SEM photos showed that the silicon particle were well covered with carbonacious materials depend on the PAn content. Si-C|Li cells were fabricated using the Si-C composites and were tested using the galvanostatic charge-discharge test. Si-C|Li cells gave better electrochemical properties than that of Si|Li cell. Si-C|Li cell using the Si-C from HCl undoped PAn Precursor showed better electrochemical properties than that from HCl doped PAn Precursor. Using the electrolyte containing FEC as an additive, the initial discharge capacity was increased. After that the galvanostatic charge-discharge test with the GISOC(gradual increasing of the state of charge) condition was carried out. Si-C(Si:PAn:50:50 wt. ratio)|Li cell showed 414 mAh/g of the reversible specific capacity, 75.7% of IIE(initial intercalation efficiency), 35.4 mAh/g of IICs(surface irreversible specific capacity).

A Study on Isolation Performance of High Damping Rubber Bearing Through Shaking Table Test and Analysis (진동대 실험 및 해석을 통한 고감쇠 고무받침의 면진성능 연구)

  • Kim, Hu-Seung;Oh, Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.601-611
    • /
    • 2016
  • The research, development and use of seismic isolation systems have been increasing with the gradual development of structure safety assurance methods for earthquakes. The High Damping Rubber Bearing (HDRB), one type of seismic isolation system, is a Laminated Rubber Bearing using special High Damping Rubber. However, as its damping function is slightly lower than that of the Lead Rubber Bearing, a similar seismic isolation system, its utilization has not been high. However, the HDRB has a superior damping force to the Natural Rubber Bearing, which has similar materials and shapes, and the existing Lead Rubber Bearing has a maleficence problem in that it contains lead. Thus, studies on HDRBs that do not use lead have increased. In this study, a test targeting the HDRB was done to examine its various dependence properties, such as its compressive stress, frequency and repeated loading. To evaluate the HDRB's seismic performance in response to several earthquake waves, the shaking table test was performed and the results analyzed. The test used the downscaled bridge model and the HDRB was divided into seismic and non-seismic isolation. Consequently, when the HDRB was applied, the damping effect was higher in the non-seismic case. However, its responses on weak foundations, such as in Mexico City, represented increased shapes. Thus, its seismic isolator.

A Study on Drying Kinetics of Low Rank Coal(Indonesia-IBC) through the Fixed-Bed Reactor Experiments (저등급석탄(低等級石炭)(인도네시아 IBC)의 고정층(固定層) 반응기(反應器) 실험(實驗)을 통한 건조(乾操) 반응속도론(反應速度論) 연구(硏究))

  • Kang, Tae-Jin;Jeon, Do-Man;Jeon, Young-Sin;Kang, Suk-Hwan;Lee, Si-Hyun;Kim, Sang-Do;Kim, Hyung-Taek
    • Resources Recycling
    • /
    • v.19 no.6
    • /
    • pp.43-50
    • /
    • 2010
  • The crisis of energy gives rise to the growing concerns over continuing uncertainty in the energy market. Under these circumstances, there are also increasing interests on coals. In particular, Low Rank Coal (LRC) is receiving gradual attentions from green industry. But due to is high moisture content range from 30 - 60%, drying process has to be preceded before being utilized as power plant. In this study drying kinetics of LRC is induced by using a fixed-bed reactor. The drying kinetics was evaluated in from of the particle size, the inlet gas temperature, the drying time, the gas velocity, and the LID ratio. The consideration of the reynold's number was taken for correction of gas velocity, particle size and LID was taken for correction of reactor diameter, packing height of coal. As being seen as characteristic of drying coal, it can be found that fixed-bed reactor can contributed to active drying of free water. In this sense, it could be considered that phase boundary reaction is appropriate mechanism.

Two-dimensional Numerical Simulation of Rainfall-induced Slope Failure (강우에 의한 사면붕괴에 관한 2차원 수치모의)

  • Regmi, Ram Krishna;Jung, Kwan-Sue;Lee, Gi-Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.34-34
    • /
    • 2012
  • Heavy storms rainfall has caused many landslides and slope failures especially in the mountainous area of the world. Landslides and slope failures are common geologic hazards and posed serious threats and globally cause billions in monetary losses and thousands of casualies each year so that studies on slope stability and its failure mechanism under rainfall are being increasing attention of these days. Rainfall-induced slope failures are generally caused by the rise in ground water level, and increase in pore water pressures and seepage forces during periods of intense rainfall. The effective stress in the soil will be decreased due to the increased pore pressure, which thus reduces the soil shear strength, eventually resulting in slope failure. During the rainfall, a wetting front goes downward into the slope, resulting in a gradual increase of the water content and a decrease of the negative pore-water pressure. This negative pore-water pressure is referred to as matric suction when referenced to the pore air pressure that contributes to the stability of unsaturated soil slopes. Therefore, the importance is the study of saturated unsaturated soil behaviors in evaluation of slope stability under heavy rainfall condition. In an actual field, a series of failures may occur in a slope due to a rainfall event. So, this study attempts to develop a numerical model to investigate this failure mechanism. A two-dimensional seepage flow model coupled with a one-dimensional surface flow and erosion/deposition model is used for seepage analysis. It is necessary to identify either there is surface runoff produced or not in a soil slope during a rainfall event, while analyzing the seepage and stability of such slopes. Runoff produced by rainfall may result erosion/deposition process on the surface of the slope. The depth of runoff has vital role in the seepage process within the soil domain so that surface flow and erosion/deposition model computes the surface water head of the runoff produced by the rainfall, and erosion/deposition on the surface of the model slope. Pore water pressure and moisture content data obtained by the seepage flow model are then used to analyze the stability of the slope. Spencer method of slope stability analysis is incorporated into dynamic programming to locate the critical slip surface of a general slope.

  • PDF

Epidemio-entomological survey of Japanese encephalitis in Korea (한국에 있어서 일본뇌염의 역학적, 매개동물학적 조사)

  • 백두현;주종윤
    • Parasites, Hosts and Diseases
    • /
    • v.29 no.1
    • /
    • pp.67-86
    • /
    • 1991
  • In order to determine the seasonal prevalence and population dynamics of Culex tritaeniorhynchus in relation to the epidemics of Japanese encephalitis, and ecology of these vector mosquito in Kyungpook Province, Korea, studies were con- ducted during the Period of 7 years from 1984 to 1990. Cx. tritaeniorhynchus first collected in June between 4th and 28th, and trapped in large numbers during the period from mid-August to early September, showed a simple sharply pointed one-peaked curve. There was a gradual decrease from mid-September, with a very small number of them collected until early October in every year. The average number of Cx. tritaeniorhynchus rapidly decreased after 1985, and the number became particularly low in 1989. The highest population density, which was observed in August during the initial three years, was found to be delayed in the following years, accompanied by a decrease in the number of mosquitoes. In the trend of nocturnal activity of Cx. tritaeniorhynchus, with oncoming darkness they become very active, gradually decreasing in activity toward mid night, but slightly increasing toward dawn. The immature stages of Cx. tritaeniorhynchus were first found in rice fields contributing to peak adult densities in mid-July. The highest average densities of Cx. trisaeniorhynchus was 14,900 per m2 on mid-August 19th. The larval Cx. tritaeniorhynchus showed high resistance levels and resistance ratios against 5 organophosphorus compounds. In the adult horisontal life table characteristics of Kyungsan colonies of Cx. tritaeniorhynchus under insectary condi- tions, life expectancy was 28.3 days for males and 59.8 days for females. The net reproductive rate was 7.8 and generation time was 25.6 days.

  • PDF

Characteristics of Nutrient Distribution by the Natural and Artificial Controlling Factors in Small Stream Estuary (소하천 하구(남해 당항포)에서 자연적, 인위적 요인이 영양염 분포에 미치는 영향)

  • KANG, SUNGCHAN;PARK, SOHYUN;AN, SOONMO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.22 no.1
    • /
    • pp.1-17
    • /
    • 2017
  • This study was conducted to investigate the nutrient distribution and controlling factors in small stream estuaries. The seasonal variations of nutrient concentration (nitrate, ammonium and phosphate) were observed from 2010 to 2012 in the three streams located in Dang-hang (closed estuary: Go-seong, open estuary: Gu-man and Ma-am). The nutrient concentrations in Go-seong were significantly higher than other estuaries, because Go-seong is relatively large and has large nutrient load from the watershed. The dyke located at the estuary, also, caused the high nutrient concentration by reducing the dilution and increasing residence time. In all three streams, nitrate concentration was high at upstream and decreased toward the downstream, because high load of nutrient input were located at upstream. Dilution and biogeochemical removal toward the downstream also caused the trends. Especially, denitrification, a typical nitrogen removing process showed clear tendency of gradual decreasing from upstream to downstream. However, Ammonium and phosphate concentrations were high at upstream and decreased toward the downstream only when the nutrient loads from the rivers were high. Nutrient concentrations were low in summer and high in winter. Freshwater discharge in summer caused a decrease of the residence time and increase of the transport of nutrients to downstream and reduced the nutrient concentrations in the estuary. Nutrient removal by the biological production during high temperature periods also affected the low nutrient concentrations. Small stream estuaries showed distinct nutrient dynamics. It is necessary to understand these characteristics in order to properly manage the small stream estuary.

Feasibility Study of Phosphor Particle Blended Hybrid Dosimeter for Quality Assurance in Radiation Therapy (Phosphor Particle 혼합형 Hybrid 선량계의 방사선치료 Quality Assurance에 대한 적용가능성 평가)

  • Shin, Yohan;Han, Moojae;Jung, Jaehoon;Cho, Heunglae;Park, Sungkwang
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.3
    • /
    • pp.333-338
    • /
    • 2019
  • In the field of radiotherapy, the Quality Assurance(QA) procedure to verify the safety of treatment is considered to be very important. However, due to various problems of the conventional dosimeters used for the QA, researches on these dosimeters have been actively carried out to replace them. In this study, to maximize the sensitivity by visible light(VL) emitted from phosphors, blended hybrid sensors were fabricated by blending various weight percent(wt%) of $Gd_2O_2S:Tb$ which is a phosphor with excellent fluorescence efficiency into $PbI_2$. Then, the electrical properties to high energy radiation from the blended sensors and the pure $PbI_2$ sensor were compared and evaluated. As a result of the sensitivity evaluation, the sensor of 3wt% showed the highest value with more than 40% difference from the other sensors, and gradual decreasing in sensitivity was observed with increasing wt% except for the sensor of 3wt%. Also, in the reproducibility evaluation, the pure $PbI_2$ sensor exhibited a large variation in coefficient of variation(CV)>0.015, while all the blended sensors showed CV<0.015.

Forecast and identifying factors on a double dip fertility rate for Korea (더블딥 출산율 요인 규명과 향후 추이)

  • Oh, Jinho
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.4
    • /
    • pp.463-483
    • /
    • 2019
  • Since 2000, Korea's total fertility rate (TFR) has been different from that of Japan, Germany, and France where irreversible constants do not change easily in the fertility rate increasing or decreasing phase. It also showed a gradual increase from the minimum fertility level 1.08 in 2005 to 1.23 in 2015, which dropped to 1.17 in 2016, to 1.05 in 2017 and to 0.98 in 2018. This is similar to a double dip in the economic status of a recession. This paper investigates such a TFR increase and decrease factor that predicts the number of births affecting TFR, examines trends in the proportion of married and marital fertility rate broken down by TFR decomposition method. We also examined how these changes affect the change in TFR. According to the results, the number of births is estimated to be between 320 and 330 thousand in 2018, 300 thousand in 2020, 230 and 240 thousand in 2025. The proportion of married is steadily decreasing from 1981 to 2025, and the marital fertility rate is predicted to decline until 2002, then increase from 2003 to 2016 and decrease from 2017 to 2025. Finally, the trend of TFR in terms of number of births, TFR decomposition and statistical model is expected to show 0.98 in 2018, 0.93 to 1.11 in 2020 and 0.76 to 1.08 in 2025.

Risk Assessment of the Accident Place Types Considering the Coastal Activity Time (연안활동시간을 고려한 장소유형별 위험도 평가)

  • Seo, Heui Jung;Park, Seon Jung;Park, Seol Hwa;Park, Seung Min
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.5
    • /
    • pp.144-155
    • /
    • 2022
  • The Korea Coast Guard evaluates the risk of major coastal activity places to prevent coastal accidents, and patrols and manages them based on that, but it is not responding properly to the continuously increasing number of coastal accidents. The reason for this is that, despite the gradual expansion of coastal activity places, there is a lack of manpower to manage and supervise them, resulting in blind spots in coastal accident safety management. Therefore, in order to solve this problem, it is necessary to prepare more efficient and effective measures that check and supplement the current coastal safety management system. Coastal accidents show different characteristics of accident causes and places due to differences in the activity characteristics of users according to time. As a result of analyzing coastal accident data (2017~2021), the frequency of daytime accidents is high in the case of sea rock, beach, and offshore, where family leisure activities are frequent. In the case of wharf, tidal flat and bridge, where accidents due to drinking, disorientation, and suicide mainly occur, the frequency of accidents at night is high. In addition, there were more accidents on weekends when the number of users increased compared to weekdays. This trend indicates that the user's temporal activity characteristics must be reflected in the risk assessment of coastal activity places. Therefore, in this study, based on the case of coastal accidents, the characteristics of accidents at coastal activity places according to time were identified, and the criteria were presented for risk evaluation by grading them. It is expected that it will be possible to lay the foundation for reducing coastal accidents by efficiently managing and supervising coastal activity places over time using the presented evaluation criteria.

Quality Characteristics of Fermented Perilla Leaves Ice Cream Using Probiotics (프로바이오틱스를 이용한 발효 깻잎 아이스크림의 품질특성)

  • SangSun Hur
    • Journal of the Korean Applied Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.375-385
    • /
    • 2024
  • The purpose of this study is to manufacture ice cream with perilla leaves fermented extract(5%, 10%, 15%, and 20% w/v) fermented by Lactobacillus acidophilus KCTC 3164 strain as functional additives. The physical and chemical properties(color, viscosity, pH, total acidity, melting rate, overrun) and antioxidant activity of ice cream with perilla leaves fermented extract were evaluated. The addition of perilla leaves fermented extract affected the color of the ice cream, and the melting rate increased with increasing addition of perilla leaves fermented extract. In contrast, viscosity showed a gradual decrease. Overrun increased gradually with higher levels of perilla leaves fermented extract, while pH decreased significantly, and total acidity increased. The DPPH radical scavenging activity and total polyphenol content of ice cream with perilla leaves fermented extract significantly increased with higher concentrations of fermented perilla leaves extract. The results of this study indicate that the ice cream sample with 10% fermented perilla leaves extract has a potential as a functional ice cream since it exhibited high overrun, a low melting rate, the desired viscosity, and high DPPH radical scavenging activity and total polyphenol content.