• Title/Summary/Keyword: gradient systems

Search Result 835, Processing Time 0.032 seconds

A New Spatial Localization Technique Using High-Order Surface Gradient Coils (SGC) (고차표면 경사자계코일을 이용한 새로운 공간 선택 방법)

  • Lee, J.K.;Yang, Y.J.;Jeong, S.T.;Yi, Y.;Cho, Z.H.;Oh, C.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.12
    • /
    • pp.43-46
    • /
    • 1994
  • A new spatial localization technique using high-order surface gradient coil (SGC) is proposed. Although the Spatial Selection with High-Order gradient (SHOT) can provide a 2-D selection with only one selective RF pulse, the high-order gradient produced by cylindrical-shape coils has not been clinically useful for clinical systems due to the large minimum selection size caused by the limited radial gradient intensity. However, by using the proposed high-order SGCs located near the imaging region, the size of volume selection can be reduced to a clinically useful 1-4 cm in diameter by applying stronger radial gradient with much less gradient driving power. A 40 cm-by-40 cm $r^{2}$ SGC has been designed and constructed, and phantom and volunteer studies have been performed. Experimental results using spatially localized MRI show good agreement to the theoretically predicted behavior.

  • PDF

Research on the application of Machine Learning to threat assessment of combat systems

  • Seung-Joon Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.7
    • /
    • pp.47-55
    • /
    • 2023
  • This paper presents a method for predicting the threat index of combat systems using Gradient Boosting Regressors and Support Vector Regressors among machine learning models. Currently, combat systems are software that emphasizes safety and reliability, so the application of AI technology that is not guaranteed to be reliable is restricted by policy, and as a result, the electrified domestic combat systems are not equipped with AI technology. However, in order to respond to the policy direction of the Ministry of National Defense, which aims to electrify AI, we conducted a study to secure the basic technology required for the application of machine learning in combat systems. After collecting the data required for threat index evaluation, the study determined the prediction accuracy of the trained model by processing and refining the data, selecting the machine learning model, and selecting the optimal hyper-parameters. As a result, the model score for the test data was over 99 points, confirming the applicability of machine learning models to combat systems.

An Integration Type Adaptive Compensator for a Class of Linearly Parameterized Systems (선형 파라미터화된 시스템에 대한 적분형 적응보상기)

  • Yoo Byung-Kook;Yang Keun-Ho
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.2
    • /
    • pp.82-88
    • /
    • 2005
  • A compensation scheme for a class of linearly parameterized systems is presented. The compensator consists of a typical linearizing control and an adaptive observer with integration type update law, which is based on Speed Gradient (SG) algorithm.. Instead of the intermediate functions of the compensation schemes suggested by other researchers, the proposed compensator is designed with some design functions which guarantee the growth, convexity, attainability, and pseudo gradient conditions in the update law. The scheme achieves the asymptotic stability of the tracking error and the boundedness of the estimation errors. A numerical example is given to demonstrate the validity of the proposed design.

  • PDF

Gradual modification of Nanoimprint Patterns by Oxygen Plasma Treatment

  • Kim, Soohyun;Kim, Da Sol;Park, Dae Keun;Yun, Kum-Hee;Jeong, Mira;Lee, Jae Jong;Yun, Wan Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.233-233
    • /
    • 2015
  • We report on a simple method for inducing physical and chemical property-gradient on nanoimprinted patterns by intensity-regulated plasma treatment under caved sample stage. As for the size gradient, a line pattern having a linewidth of 294.9 nm was etched to have gradually varying width from 277.4 nm to 147.9 nm. Modified pattern was proven to be adaptable to replica stamp for reversal patterning. To investigate the wettability gradient, imprinted nanopatterns were coated with fluoroalkylsilane to increase the hydrophobicity, and the surface was modified to have gradually varying wettability from hydrophobic to hydrophilic (contact angle was ${\sim}160^{\circ}$ to ${\sim}5^{\circ}$ on a single chip). This method is expected to be applicable to the selective adsorption of biological entities and hydrodynamic manipulation of liquid droplets for the pumpless microfluidics.

  • PDF

Hybrid Silhouette Extraction Using Color and Gradient Informations (색상 및 기울기 정보를 이용한 인간 실루엣 추출)

  • Joo, Young-Hoon;So, Jea-Yun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.7
    • /
    • pp.913-918
    • /
    • 2007
  • Human motion analysis is an important research subject in human-robot interaction (HRI). However, before analyzing the human motion, silhouette of human body should be extracted from sequential images obtained by CCD camera. The intelligent robot system requires more robust silhouette extraction method because it has internal vibration and low resolution. In this paper, we discuss the hybrid silhouette extraction method for detecting and tracking the human motion. The proposed method is to combine and optimize the temporal and spatial gradient information. Also, we propose some compensation methods so as not to miss silhouette information due to poor images. Finally, we have shown the effectiveness and feasibility of the proposed method through some experiments.

Shape Optimization of Magnetic Systems with state variable Constraints (상태변수 구속조건을 갖는 자장시스템의 형상최적화)

  • Kim, Chang-Wook;Choi, Myung-Jun;Lee, Se-Hee;Park, Il-Han
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.143-145
    • /
    • 1998
  • This paper presents the shape optimization algorithm of magnetic systems with, state variable constraints using the Finite Element Method. In the design' of electromagnetic systems, sometimes we have to consider the state variables when they seriously affect the performance of electromagnetic systems. So we should define that some design problems have the constraints of the state variables. We use the gradient of constraints and sensitivity analysis in order to consider the state variable constraints and obtain an optimal shape. The optimal shape must be satisfied constraints, so we take the gradient projection method as a kind of optimization methods. In this paper a numerical example with state variable constraints uses the superconducting electromagnet that has another constraint which the volume of the superconductor should be constant.

  • PDF

A Study on the Edge Enhancement of X-ray Images Generated by a Gas Electron Multiplier Chamber

  • Moon, B.S.;Coster, Dan
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.155-160
    • /
    • 2004
  • In this paper, we describe the results of a study on the edge enhancement of X-ray images by using their fuzzy system representation. A set of gray scale X-ray images was generated using the EGS4 computer code. An aluminum plate or a lead plate with three parallel strips taken out has been used as the object with the thickness and the width of the plate, and the gap between the two strips varied. We started with a comparative study on a set of the fuzzy sets for their applicability as the input fuzzy sets for the fuzzy system representation of the gray scale images. Then we describe how the fuzzy system is used to sharpen the edges. Our algorithm is based on adding the magnitude of the gradient not to the pixel value of concern but rather to the nearest neighboring pixel in the direction of the gradient. We show that this algorithm is better in maintaining the spatial resolution of the original image after the edge enhancement.

Optimal Design of Laminate Composites with Gradient Structure for Weight Reduction

  • Back, Sung-Ki;Kang, Tae-Jin;Lee, Kyung-Woo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.68-72
    • /
    • 1999
  • In an effort to construct a structure under the design principle of minimal use of materials for maximum performances, a discrete gradient structure has been introduced in laminate composite systems. Using a sequential linear programming method, the gradient structure of composites to maximize the buckling load was optimized in terms of fiber volume fraction and thickness of each layer. Theoretical optimization results were then verified with experimental ones. The buckling load of laminate composite showed maximum value with the outmost [$0^{\circ}$] layer concentrated by almost all the fibers when the ratio of length to width(aspect ratio) was less than 1.0. But when the aspect ratio was 2.0, the optimum was determined in a structure where the thickness and fiber volume fraction were well balanced in each layer. From the optimization of gradient structure, the optimal fiber volume fraction and thickness of each layer were proposed. Experimental results agreed well with the theoretical ones. Gradient structures have also shown an advantage in the weight reduction of composites compared with the conventional homogeneous structures.

  • PDF