• Title/Summary/Keyword: gradient model

Search Result 1,577, Processing Time 0.028 seconds

Traffic Congestion Estimation by Adopting Recurrent Neural Network (순환인공신경망(RNN)을 이용한 대도시 도심부 교통혼잡 예측)

  • Jung, Hee jin;Yoon, Jin su;Bae, Sang hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.6
    • /
    • pp.67-78
    • /
    • 2017
  • Traffic congestion cost is increasing annually. Specifically congestion caused by the CDB traffic contains more than a half of the total congestion cost. Recent advancement in the field of Big Data, AI paved the way to industry revolution 4.0. And, these new technologies creates tremendous changes in the traffic information dissemination. Eventually, accurate and timely traffic information will give a positive impact on decreasing traffic congestion cost. This study, therefore, focused on developing both recurrent and non-recurrent congestion prediction models on urban roads by adopting Recurrent Neural Network(RNN), a tribe in machine learning. Two hidden layers with scaled conjugate gradient backpropagation algorithm were selected, and tested. Result of the analysis driven the authors to 25 meaningful links out of 33 total links that have appropriate mean square errors. Authors concluded that RNN model is a feasible model to predict congestion.

Blockchain Based Financial Portfolio Management Using A3C (A3C를 활용한 블록체인 기반 금융 자산 포트폴리오 관리)

  • Kim, Ju-Bong;Heo, Joo-Seong;Lim, Hyun-Kyo;Kwon, Do-Hyung;Han, Youn-Hee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.1
    • /
    • pp.17-28
    • /
    • 2019
  • In the financial investment management strategy, the distributed investment selecting and combining various financial assets is called portfolio management theory. In recent years, the blockchain based financial assets, such as cryptocurrencies, have been traded on several well-known exchanges, and an efficient portfolio management approach is required in order for investors to steadily raise their return on investment in cryptocurrencies. On the other hand, deep learning has shown remarkable results in various fields, and research on application of deep reinforcement learning algorithm to portfolio management has begun. In this paper, we propose an efficient financial portfolio investment management method based on Asynchronous Advantage Actor-Critic (A3C), which is a representative asynchronous reinforcement learning algorithm. In addition, since the conventional cross-entropy function can not be applied to portfolio management, we propose a proper method where the existing cross-entropy is modified to fit the portfolio investment method. Finally, we compare the proposed A3C model with the existing reinforcement learning based cryptography portfolio investment algorithm, and prove that the performance of the proposed A3C model is better than the existing one.

Design Optimization of Multi-element Airfoil Shapes to Minimize Ice Accretion (결빙 증식 최소화를 위한 다중 익형 형상 최적설계)

  • Kang, Min-Je;Lee, Hyeokjin;Jo, Hyeonseung;Myong, Rho-Shin;Lee, Hakjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.7
    • /
    • pp.445-454
    • /
    • 2022
  • Ice accretion on the aircraft components, such as wings, fuselage, and empennage, can occur when the aircraft encounters a cloud zone with high humidity and low temperature. The prevention of ice accretion is important because it causes a decrease in the aerodynamic performance and flight stability, thus leading to fatal safety problems. In this study, a shape design optimization of a multi-element airfoil is performed to minimize the amount of ice accretion on the high-lift device including leading-edge slat, main element, and trailing-edge flap. The design optimization framework proposed in this paper consists of four major parts: air flow, droplet impingement and ice accretion simulations and gradient-free optimization algorithm. Reynolds-averaged Navier-Stokes (RANS) simulation is used to predict the aerodynamic performance and flow field around the multi-element airfoil at the angle of attack 8°. Droplet impingement and ice accretion simulations are conducted using the multi-physics computational analysis tool. The objective function is to minimize the total mass of ice accretion and the design variables are the deflection angle, gap, and overhang of the flap and slat. Kriging surrogate model is used to construct the response surface, providing rapid approximations of time-consuming function evaluation, and genetic algorithm is employed to find the optimal solution. As a result of optimization, the total mass of ice accretion on the optimized multielement airfoil is reduced by about 8% compared to the baseline configuration.

A Study on the Prediction of Disc Cutter Wear Using TBM Data and Machine Learning Algorithm (TBM 데이터와 머신러닝 기법을 이용한 디스크 커터마모 예측에 관한 연구)

  • Tae-Ho, Kang;Soon-Wook, Choi;Chulho, Lee;Soo-Ho, Chang
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.502-517
    • /
    • 2022
  • As the use of TBM increases, research has recently increased to to analyze TBM data with machine learning techniques to predict the exchange cycle of disc cutters, and predict the advance rate of TBM. In this study, a regression prediction of disc cutte wear of slurry shield TBM site was made by combining machine learning based on the machine data and the geotechnical data obtained during the excavation. The data were divided into 7:3 for training and testing the prediction of disc cutter wear, and the hyper-parameters are optimized by cross-validated grid-search over a parameter grid. As a result, gradient boosting based on the ensemble model showed good performance with a determination coefficient of 0.852 and a root-mean-square-error of 3.111 and especially excellent results in fit times along with learning performance. Based on the results, it is judged that the suitability of the prediction model using data including mechanical data and geotechnical information is high. In addition, research is needed to increase the diversity of ground conditions and the amount of disc cutter data.

Probability Map of Migratory Bird Habitat for Rational Management of Conservation Areas - Focusing on Busan Eco Delta City (EDC) - (보존지역의 합리적 관리를 위한 철새 서식 확률지도 구축 - 부산 Eco Delta City (EDC)를 중심으로 -)

  • Kim, Geun Han;Kong, Seok Jun;Kim, Hee Nyun;Koo, Kyung Ah
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.6
    • /
    • pp.67-84
    • /
    • 2023
  • In some areas of the Republic of Korea, the designation and management of conservation areas do not adequately reflect regional characteristics and often impose behavioral regulations without considering the local context. One prominent example is the Busan EDC area. As a result, conflicts may arise, including large-scale civil complaints, regarding the conservation and utilization of these areas. Therefore, for the efficient designation and management of protected areas, it is necessary to consider various ecosystem factors, changes in land use, and regional characteristics. In this study, we specifically focused on the Busan EDC area and applied machine learning techniques to analyze the habitat of regional species. Additionally, we employed Explainable Artificial Intelligence techniques to interpret the results of our analysis. To analyze the regional characteristics of the waterfront area in the Busan EDC district and the habitat of migratory birds, we used bird observations as dependent variables, distinguishing between presence and absence. The independent variables were constructed using land cover, elevation, slope, bridges, and river depth data. We utilized the XGBoost (eXtreme Gradient Boosting) model, known for its excellent performance in various fields, to predict the habitat probabilities of 11 bird species. Furthermore, we employed the SHapley Additive exPlanations technique, one of the representative methodologies of XAI, to analyze the relative importance and impact of the variables used in the model. The analysis results showed that in the EDC business district, as one moves closer to the river from the waterfront, the likelihood of bird habitat increases based on the overlapping habitat probabilities of the analyzed bird species. By synthesizing the major variables influencing the habitat of each species, key variables such as rivers, rice fields, fields, pastures, inland wetlands, tidal flats, orchards, cultivated lands, cliffs & rocks, elevation, lakes, and deciduous forests were identified as areas that can serve as habitats, shelters, resting places, and feeding grounds for birds. On the other hand, artificial structures such as bridges, railways, and other public facilities were found to have a negative impact on bird habitat. The development of a management plan for conservation areas based on the objective analysis presented in this study is expected to be extensively utilized in the future. It will provide diverse evidential materials for establishing effective conservation area management strategies.

A Recidivism Prediction Model Based on XGBoost Considering Asymmetric Error Costs (비대칭 오류 비용을 고려한 XGBoost 기반 재범 예측 모델)

  • Won, Ha-Ram;Shim, Jae-Seung;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.127-137
    • /
    • 2019
  • Recidivism prediction has been a subject of constant research by experts since the early 1970s. But it has become more important as committed crimes by recidivist steadily increase. Especially, in the 1990s, after the US and Canada adopted the 'Recidivism Risk Assessment Report' as a decisive criterion during trial and parole screening, research on recidivism prediction became more active. And in the same period, empirical studies on 'Recidivism Factors' were started even at Korea. Even though most recidivism prediction studies have so far focused on factors of recidivism or the accuracy of recidivism prediction, it is important to minimize the prediction misclassification cost, because recidivism prediction has an asymmetric error cost structure. In general, the cost of misrecognizing people who do not cause recidivism to cause recidivism is lower than the cost of incorrectly classifying people who would cause recidivism. Because the former increases only the additional monitoring costs, while the latter increases the amount of social, and economic costs. Therefore, in this paper, we propose an XGBoost(eXtream Gradient Boosting; XGB) based recidivism prediction model considering asymmetric error cost. In the first step of the model, XGB, being recognized as high performance ensemble method in the field of data mining, was applied. And the results of XGB were compared with various prediction models such as LOGIT(logistic regression analysis), DT(decision trees), ANN(artificial neural networks), and SVM(support vector machines). In the next step, the threshold is optimized to minimize the total misclassification cost, which is the weighted average of FNE(False Negative Error) and FPE(False Positive Error). To verify the usefulness of the model, the model was applied to a real recidivism prediction dataset. As a result, it was confirmed that the XGB model not only showed better prediction accuracy than other prediction models but also reduced the cost of misclassification most effectively.

A STUDY ON THE IONOSPHERE AND THERMOSPHERE INTERACTION BASED ON NCAR-TIEGCM: DEPENDENCE OF THE INTERPLANETARY MAGNETIC FIELD (IMF) ON THE MOMENTUM FORCING IN THE HIGH-LATITUDE LOWER THERMOSPHERE (NCAR-TIEGCM을 이용한 이온권과 열권의 상호작용 연구: 행성간 자기장(IMF)에 따른 고위도 하부 열권의 운동량 강제에 대한 연구)

  • Kwak, Young-Sil;Richmond, Arthur D.;Ahn, Byung-Ho;Won, Young-In
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.2
    • /
    • pp.147-174
    • /
    • 2005
  • To understand the physical processes that control the high-latitude lower thermospheric dynamics, we quantify the forces that are mainly responsible for maintaining the high-latitude lower thermospheric wind system with the aid of the National Center for Atmospheric Research Thermosphere-Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM). Momentum forcing is statistically analyzed in magnetic coordinates, and its behavior with respect to the magnitude and orientation of the interplanetary magnetic field (IMF) is further examined. By subtracting the values with zero IMF from those with non-zero IMF, we obtained the difference winds and forces in the high-latitude 1ower thermosphere(<180 km). They show a simple structure over the polar cap and auroral regions for positive($B_y$ > 0.8|$\overline{B}_z$ |) or negative($B_y$ < -0.8|$\overline{B}_z$|) IMF-$\overline{B}_y$ conditions, with maximum values appearing around -80$^{\circ}$ magnetic latitude. Difference winds and difference forces for negative and positive $\overline{B}_y$ have an opposite sign and similar strength each other. For positive($B_z$ > 0.3125|$\overline{B}_y$|) or negative($B_z$ < -0.3125|$\overline{B}_y$|) IMF-$\overline{B}_z$ conditions the difference winds and difference forces are noted to subauroral latitudes. Difference winds and difference forces for negative $\overline{B}_z$ have an opposite sign to positive $\overline{B}_z$ condition. Those for negative $\overline{B}_z$ are stronger than those for positive indicating that negative $\overline{B}_z$ has a stronger effect on the winds and momentum forces than does positive $\overline{B}_z$ At higher altitudes(>125 km) the primary forces that determine the variations of tile neutral winds are the pressure gradient, Coriolis and rotational Pedersen ion drag forces; however, at various locations and times significant contributions can be made by the horizontal advection force. On the other hand, at lower altitudes(108-125 km) the pressure gradient, Coriolis and non-rotational Hall ion drag forces determine the variations of the neutral winds. At lower altitudes(<108 km) it tends to generate a geostrophic motion with the balance between the pressure gradient and Coriolis forces. The northward component of IMF By-dependent average momentum forces act more significantly on the neutral motion except for the ion drag. At lower altitudes(108-425 km) for negative IMF-$\overline{B}_y$ condition the ion drag force tends to generate a warm clockwise circulation with downward vertical motion associated with the adiabatic compress heating in the polar cap region. For positive IMF-$\overline{B}_y$ condition it tends to generate a cold anticlockwise circulation with upward vertical motion associated with the adiabatic expansion cooling in the polar cap region. For negative IMF-$\overline{B}_z$ the ion drag force tends to generate a cold anticlockwise circulation with upward vertical motion in the dawn sector. For positive IMF-$\overline{B}_z$ it tends to generate a warm clockwise circulation with downward vertical motion in the dawn sector.

Estimation of Shoot Development for a Single-stemmed Rose 'Vital' Based on Thermal Units in a Plant Factory System (식물공장 시스템에서 Thermal Units을 이용한 Single-Stemmed Rose 'Vital'의 신초발달 예측)

  • Yeo, Kyung-Hwan;Cho, Young-Yeol;Lee, Yong-Beom
    • Horticultural Science & Technology
    • /
    • v.28 no.5
    • /
    • pp.768-776
    • /
    • 2010
  • This study was conducted to predict number and fresh weight of leaves, and total leaf area of a single-stemmed rose 'Vital' based on the accumulated thermal units, and to develop a model of shoot development for the prediction of the time when the flowering shoot reaches a phenological stage in a plant factory system. The base temperature ($T_b$), optimum temperature ($T_{opt}$), and maximum temperature ($T_{max}$) were estimated by regressing the rate of shoot development against the temperature gradient. The rate of shoot development ($R$, $d^{-1}$) for the phase from cutting to bud break (CT-BB) was best described by a linear model $R_b$ ($d^{-1}$) = -0.0089 + $0.0016{\cdot}temp$. The rate of shoot development for the phase from bud break to harvest (BB-HV) was fitted to the parabolic model $R_h$ ($d^{-1}$) = $-0.0001{\cdot}temp^2$ + $0.0054{\cdot}temp$ - 0.0484. The $T_b$, $T_{opt}$, and $T_{max}$ values were 5.56, 27.0, and $42.7^{\circ}C$, respectively. The $T_b$ value was used in the thermal unit computations for the shoot development. Number of leaves, leaf area (LA), and leaf fresh weight showed sigmoidal curves regardless of the cut time. The shoot development and leaf area model was described as a sigmoidal function using thermal units. Leaf area was described as LA = 578.7 $[1+(thermal units/956.1)^{-8.54}]^{-1}$. Estimated and observed shoot length and leaf fresh weight showed a reasonably good fit with 1.060 ($R^2=0.976^{***}$) and 1.043 ($R^2=0.955^{***}$), respectively. The average thermal units required from cutting to transplant and from transplant to harvest stages were $426{\pm}42^{\circ}C{\cdot}d$ and $783{\pm}24^{\circ}C{\cdot}d$, respectively.

Predicting the Goshawk's habitat area using Species Distribution Modeling: Case Study area Chungcheongbuk-do, South Korea (종분포모형을 이용한 참매의 서식지 예측 -충청북도를 대상으로-)

  • Cho, Hae-Jin;Kim, Dal-Ho;Shin, Man-Seok;Kang, Tehan;Lee, Myungwoo
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.3
    • /
    • pp.333-343
    • /
    • 2015
  • This research aims at identifying the goshawk's possible and replaceable breeding ground by using the MaxEnt prediction model which has so far been insufficiently used in Korea, and providing evidence to expand possible protection areas for the goshawk's breeding for the future. The field research identified 10 goshawk's nests, and 23 appearance points confirmed during the 3rd round of environmental research were used for analysis. 4 geomorphic, 3 environmental, 7 distance, and 9 weather factors were used as model variables. The final environmental variables were selected through non-parametric verification between appearance and non-appearance coordinates identified by random sampling. The final predictive model (MaxEnt) was structured using 10 factors related to breeding ground and 7 factors related to appearance area selected by statistics verification. According to the results of the study, the factor that affected breeding point structure model the most was temperature seasonality, followed by distance from mixforest, density-class on the forest map and relief energy. The factor that affected appearance point structure model the most was temperature seasonality, followed by distance from rivers and ponds, distance from agricultural land and gradient. The nature of the goshawk's breeding environment and habit to breed inside forests were reflected in this modeling that targets breeding points. The northern central area which is about $189.5 km^2$(2.55 %) is expected to be suitable breeding ground. Large cities such as Cheongju and Chungju are located in the southern part of Chungcheongbuk-do whereas the northern part of Chungcheongbuk-do has evenly distributed forests and farmlands, which helps goshawks have a scope of influence and food source to breed. Appearance point modeling predicted an area of $3,071 km^2$(41.38 %) showing a wider ranging habitat than that of the breeding point modeling due to some limitations such as limited moving observation and non-consideration of seasonal changes. When targeting the breeding points, a specific predictive area can be deduced but it is difficult to check the points of nests and it is impossible to reflect the goshawk's behavioral area. On the other hand, when targeting appearance points, a wider ranging area can be covered but it is less accurate compared to predictive breeding point since simple movements and constant use status are not reflected. However, with these results, the goshawk's habitat can be predicted with reasonable accuracy. In particular, it is necessary to apply precise predictive breeding area data based on habitat modeling results when enforcing an environmental evaluation or establishing a development plan.

Effect of Freshwater Discharge from a Water Reservoir on the Flow Circulation in the Semi-Closed Harbor (유수지로부터의 담수 방류가 항 내 해수순환에 미치는 영향)

  • Choi, Jae Yoon;Kim, Jong Wook;Lee, Hye Min;Yoon, Byung Il;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • To investigate the effect of freshwater discharge on the seawater circulation in the semi-closed harbor, a 3-D hydrodynamic model was applied to the International Ferry Terminal (IFT). The model run is conducted for 45 days (from May 15 to June 30, 2020), and the reproducibility of the model for time-spatial variability of current velocity and salinity was verified by comparison with model results and observation data. There are two sources of freshwater towards inside of the IFT: Han River and water reservoir located in the eastern part of IFT. In residual current velocity results, the two-layer circulation (the seaward flow near surface and the landward flow near bottom)derived from the horizontal salinity gradient in only considering the discharge from a Han River is more developed than that considering both the Han River and water reservoir. This suggests that the impact of freshwater from the reservoir is greater in the IFT areas than that from a Han River. Additionally, the two-layer circulation is stronger in the IFT located in southern part than Incheon South Port located in northern part. This process is formed by the interaction between tidal current propagating into the port and freshwater discharge from a water reservoir, and flow with a low salinity (near 0 psu) is delivered into the IFT. This low salinity distribution reinforces the horizontal stratification in front of the IFT, and maintains a two-layer circulation. Therefore, local sources of freshwater input are considered to estimate for mass transport process associated with the seawater circulation within the harbor and It is necessary to perform a numerical model according to the real-time freshwater flow rate discharged.