• Title/Summary/Keyword: gradient methods

Search Result 1,187, Processing Time 0.025 seconds

Ensemble Gene Selection Method Based on Multiple Tree Models

  • Mingzhu Lou
    • Journal of Information Processing Systems
    • /
    • v.19 no.5
    • /
    • pp.652-662
    • /
    • 2023
  • Identifying highly discriminating genes is a critical step in tumor recognition tasks based on microarray gene expression profile data and machine learning. Gene selection based on tree models has been the subject of several studies. However, these methods are based on a single-tree model, often not robust to ultra-highdimensional microarray datasets, resulting in the loss of useful information and unsatisfactory classification accuracy. Motivated by the limitations of single-tree-based gene selection, in this study, ensemble gene selection methods based on multiple-tree models were studied to improve the classification performance of tumor identification. Specifically, we selected the three most representative tree models: ID3, random forest, and gradient boosting decision tree. Each tree model selects top-n genes from the microarray dataset based on its intrinsic mechanism. Subsequently, three ensemble gene selection methods were investigated, namely multipletree model intersection, multiple-tree module union, and multiple-tree module cross-union, were investigated. Experimental results on five benchmark public microarray gene expression datasets proved that the multiple tree module union is significantly superior to gene selection based on a single tree model and other competitive gene selection methods in classification accuracy.

Model-based Gradient Compensation in Spiral Imaging (나선주사영상에서 모델 기반 경사자계 보상)

  • Cho, S.H.;Kim, P.K.;Lim, J.W.;Ahn, C.B.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.1
    • /
    • pp.15-21
    • /
    • 2009
  • Purpose : A method to estimate a real k-space trajectory based on a circuit model of the gradient system is proposed for spiral imaging. The estimated k-space trajectory instead of the ideal trajectory is used in the reconstruction to improve the image quality in the spiral imaging. Materials and Methods : Since the gradient system has self resistance, capacitance, and inductance, as well as the mutual inductance between the magnet and the gradient coils, the generated gradient fields have delays and transient responses compared to the input waveform to the gradient system. The real gradient fields and their trajectory in k-space play an important role in the reconstruction. In this paper, the gradient system is modeled with R-L-C circuits, and real gradient fields are estimated from the input to the model. An experimental method to determine the model parameters (R, L, C values) is also suggested from the quality of the reconstructed image. Results : The gradient fields are estimated from the circuit model of the gradient system at 1.5 Tesla MRI system. The spiral trajectory obtained by the integration of the estimated gradient fields is used for the reconstruction. From experiments, the reconstructed images using the estimated trajectory show improved uniformity, reduced overshoots near the edges, and enhanced resolutions compared to those using the ideal trajectory without model. Conclusion : The gradient system was successfully modeled by the R-L-C circuits. Much improved reconstruction was achieved in the spiral imaging using the trajectory estimated by the proposed model.

  • PDF

Nonrigid Lung Registration between End-Exhale and End-Inhale CT Scans Using a Demon Algorithm (데몬 알고리즘을 이용한 호기-흡기 CT 영상 비강체 폐 정합)

  • Yim, Ye-Ny;Hong, Helen;Shin, Yeong-Gil
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.1
    • /
    • pp.9-18
    • /
    • 2010
  • This paper proposes a deformable registration method using a demon algorithm for aligning the lungs between end-exhale and end-inhale CT scans. The lungs are globally aligned by affine transformation and locally deformed by a demon algorithm. The use of floating gradient force allows a fast convergence in the lung regions with a weak gradient of the reference image. The active-cell-based demon algorithm helps to accelerate the registration process and reduce the probability of deformation folding because it avoids unnecessary computation of the displacement for well-matched lung regions. The performance of the proposed method was evaluated through comparisons of methods that use a reference gradient force or a combined gradient force as well as methods with and without active cells. The results show that the proposed method can accurately register lungs with large deformations and can reduce the processing time considerably.

Anisotropic Diffusion based on Directions of Gradient (기울기 방향성 기반의 이방성 확산)

  • Kim, Hye-Suk;Kim, Gi-Hong;Yoon, Hyo-Sun;Lee, Guee-Sang
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.11
    • /
    • pp.1-9
    • /
    • 2008
  • Thanks to the multimedia technology development, it is possible to show image representations in high quality and to process images in various ways. Anisotropic diffusion as an effective diffusion filtering among many image preprocessing methods and postprocessing methods is used in reduction of speckle noises of ultrasound images, image restoration, edge detection, and image segmentation. However, the conventional anisotropic diffusion based on a cross-kernel causes the following problems. The problem is the concentration of edges in the vertical or horizontal directions. In this paper, a new anisotropic diffusion transform based on directions of gradient is proposed. The proposed method uses the eight directional square-kernel which is an expanded form of the cross-kernel. The proposed method is to select directions of small gradient based on square-kernel. Therefore, the range of proposed diffusion is selected adaptively according to the number of the directions of gradient. Experimental results show that the proposed method can decrease the concentration of edges in the vertical or horizontal directions, remove impulse noise. The image in high quality can be obtained as a result of the proposed method.

Properties of Acrylic Pressure Sensitive Adhesive Performance and Evaluation Using Combinatorial Methods (조합기법을 활용한 아크릴 점착제의 점착물성 평가)

  • Park, Ji Won;Lim, Dong-Hyuk;Kim, Hyun Joong;Kim, Kyoung Mahn;Kim, Hyung Il;Ryu, Jong Min
    • Journal of Adhesion and Interface
    • /
    • v.10 no.3
    • /
    • pp.127-133
    • /
    • 2009
  • Acrylic pressure sensitive adhesives (PSAs) are used in various field of high-technology industries such as semiconductor, display, mobile, automobile, and so on. Because of they have high durabilities and can be easily introduced functional groups in their molecular structures. PSA perfomances has an effect on their applications in industry process operation, reliability of final products. In this study, PSA performances as a function of fim thickness which is one of the impact factors effects on PSA performances will be investigated using combinatorial methods. Acrylic PSAs are synthesized using 2-ethylhexyl acrylate and acrylic acid. Thickness-gradient of acrylic PSA sample is made by a micro applicator. We compare general coating method with thickness-gradient coating method and evaluate the reappearance of combinatorial methods compared with existing coating method. Thickness-gradient of acrylic PSA sample shows rough and broad data tendency.

  • PDF

A Level Set Method to Image Segmentation Based on Local Direction Gradient

  • Peng, Yanjun;Ma, Yingran
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1760-1778
    • /
    • 2018
  • For image segmentation with intensity inhomogeneity, many region-based level set methods have been proposed. Some of them however can't get the relatively ideal segmentation results under the severe intensity inhomogeneity and weak edges, and without use of the image gradient information. To improve that, we propose a new level set method combined with local direction gradient in this paper. Firstly, based on two assumptions on intensity inhomogeneity to images, the relationships between segmentation objects and image gradients to local minimum and maximum around a pixel are presented, from which a new pixel classification method based on weight of Euclidian distance is introduced. Secondly, to implement the model, variational level set method combined with image spatial neighborhood information is used, which enhances the anti-noise capacity of the proposed gradient information based model. Thirdly, a new diffusion process with an edge indicator function is incorporated into the level set function to classify the pixels in homogeneous regions of the same segmentation object, and also to make the proposed method more insensitive to initial contours and stable numerical implementation. To verify our proposed method, different testing images including synthetic images, magnetic resonance imaging (MRI) and real-world images are introduced. The image segmentation results demonstrate that our method can deal with the relatively severe intensity inhomogeneity and obtain the comparatively ideal segmentation results efficiently.

NUMERICAL SIMULATION ON CONTROL OF HUMIDITY AND AIR TEMPERATURE IN THE GRADIENT BIOME (환경경도 바이옴 내의 온도 및 습도 제어 시뮬레이션)

  • Jeong, S.M.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.32-39
    • /
    • 2016
  • The Gradient Biome is a unique and large greenhouse(length 200 m, width 50 m, height:40 m) in which the elements of the weather, such as temperature and humidity, are controlled and reproduced in such a way as to create a continuous gradient from the tropical to frigid zones along specified longitudinal or transvers lines on the earth. One of the main purposes of the Gradient Biome is to observe the possible responses of the ecosystems (mainly plants), which are to be corresponding to each test climate and be introduced in the Biome, to the expected global warming. As one of the expected responses is the shift of the ecosystem(s) toward the region of suitable environment, there should be no artificial obstacles, which can prevent the shift, inside the facility. However, it is important but not so easy to find the ways of how the temperature and humidity in the Biome could be reproduced since the environmental variables tends to be homogeneous. In this paper, numerical simulations were carried out to find the effective control methods for air temperature and humidity inside the real scale Biome. One of the contributed solvers of OpenFOAM, which is an open source physics simulation code, was modified and used for the simulations.

Low-frequency Pattern Control Using Gradient Speaker Arrays (그레디언트 스피커 배열을 이용한 저주파 지향성 제어)

  • Choi, Chan-Gyu;Park, Cheon-Il;Rho, Jungkyu;Lee, Seon-Hee
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.4
    • /
    • pp.30-36
    • /
    • 2013
  • Recently the globalization of the media content industry, various activities have been made in the field of art and the speaker system is very important in the sound industry which is one of the arts. The directional characteristics of a loudspeaker refer to the radiation of sound in certain directions and are among the most important features of a loudspeaker. Designing a loudspeaker that can keep all of its constant directivity at all frequencies is difficult due to the wavelengths of audio frequencies and the size of horns and transducers. This study proposed gradient array methods to improve low frequency pattern control of full-range speakers to maximize Direct to Reverberant Ratios at the listeners.

An Inverse Analysis of Two-Dimensional Heat Conduction Problem Using Regular and Modified Conjugate Gradient Method (표준공액구배법과 수정공액구배법을 이용한 2차원 열전도 문제의 역해석)

  • Choi, Eui-Rak;Kim, Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.12
    • /
    • pp.1715-1725
    • /
    • 1998
  • A two-dimensional transient inverse heat conduction problem involving the estimation of the unknown location, ($X^*$, $Y^*$), and timewise varying unknown strength, $G({\tau})$, of a line heat source embedded inside a rectangular bar with insulated boundaries has been solved simultaneously. The regular conjugate gradient method, RCGM and the modified conjugate gradient method, MCGM with adjoint equation, are used alternately to estimate the unknown strength $G({\tau})$ of the source term, while the parameter estimation approach is used to estimate the unknown location ($X^*$, $Y^*$) of the line heat source. The alternate use of the regular and the modified conjugate gradient methods alleviates the convergence difficulties encountered at the initial and final times (i.e ${\tau}=0$ and ${\tau}={\tau}_f$), hence stabilizes the computation and fastens the convergence of the solution. In order to examine the effectiveness of this approach under severe test conditions, the unknown strength $G({\tau})$ is chosen in the form of rectangular, triangular and sinusoidal functions.

Neighbor Gradient-based Multicast Routing for Service-Oriented Applications

  • Wang, Hui;Mao, Jianbiao;Li, Tao;Sun, Zhigang;Gong, Zhenghu;Lv, Gaofeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2231-2252
    • /
    • 2012
  • With the prevalence of diverse services-oriented applications, such as IPTV systems and on-line games, the current underlying communication networks face more and more challenges on the aspects of flexibility and adaptability. Therefore, an effective and efficient multicast routing mechanism, which can fulfill different requirements of different personalized services, is critical and significant. In this paper, we first define the neighbor gradient, which is calculated based on the weighted sum of attributes such as residual link capacity, normalized hop count, etc. Then two distributed multicast routing algorithms which are neighbor Gradient-based Multicast Routing for Static multicast membership (GMR-S) and neighbor Gradient-based Multicast Routing for Dynamic multicast membership (GMR-D), are proposed. GMR-S is suitable for static membership situation, while GMR-D can be used for the dynamic membership network environment. Experimental results demonstrate the effectiveness and efficiency of our proposed methods.