• Title/Summary/Keyword: gradient algorithm

Search Result 1,165, Processing Time 0.025 seconds

Genetic Algorithm with the Local Fine-Tuning Mechanism (유전자 알고리즘을 위한 지역적 미세 조정 메카니즘)

  • 임영희
    • Korean Journal of Cognitive Science
    • /
    • v.4 no.2
    • /
    • pp.181-200
    • /
    • 1994
  • In the learning phase of multilyer feedforword neural network,there are problems such that local minimum,learning praralysis and slow learning speed when backpropagation algorithm used.To overcome these problems, the genetic algorithm has been used as learing method in the multilayer feedforword neural network instead of backpropagation algorithm.However,because the genetic algorith, does not have any mechanism for fine-tuned local search used in backpropagation method,it takes more time that the genetic algorithm converges to a global optimal solution.In this paper,we suggest a new GA-BP method which provides a fine-tunes local search to the genetic algorithm.GA-BP method uses gradient descent method as one of genetic algorithm's operators such as mutation or crossover.To show the effciency of the developed method,we applied it to the 3-parity bit problem with analysis.

Resource Allocation Algorithm for Multi-cell Cognitive Radio Networks with Imperfect Spectrum Sensing and Proportional Fairness

  • Zhu, Jianyao;Liu, Jianyi;Zhou, Zhaorong;Li, Li
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1153-1162
    • /
    • 2016
  • This paper addresses the resource allocation (RA) problem in multi-cell cognitive radio networks. Besides the interference power threshold to limit the interference on primary users PUs caused by cognitive users CUs, a proportional fairness constraint is used to guarantee fairness among multiple cognitive cells and the impact of imperfect spectrum sensing is taken into account. Additional constraints in typical real communication scenarios are also considered-such as a transmission power constraint of the cognitive base stations, unique subcarrier allocation to at most one CU, and others. The resulting RA problem belongs to the class of NP-hard problems. A computationally efficient optimal algorithm cannot therefore be found. Consequently, we propose a suboptimal RA algorithm composed of two modules: a subcarrier allocation module implemented by the immune algorithm, and a power control module using an improved sub-gradient method. To further enhance algorithm performance, these two modules are executed successively, and the sequence is repeated twice. We conduct extensive simulation experiments, which demonstrate that our proposed algorithm outperforms existing algorithms.

Learning an Artificial Neural Network Using Dynamic Particle Swarm Optimization-Backpropagation: Empirical Evaluation and Comparison

  • Devi, Swagatika;Jagadev, Alok Kumar;Patnaik, Srikanta
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.2
    • /
    • pp.123-131
    • /
    • 2015
  • Training neural networks is a complex task with great importance in the field of supervised learning. In the training process, a set of input-output patterns is repeated to an artificial neural network (ANN). From those patterns weights of all the interconnections between neurons are adjusted until the specified input yields the desired output. In this paper, a new hybrid algorithm is proposed for global optimization of connection weights in an ANN. Dynamic swarms are shown to converge rapidly during the initial stages of a global search, but around the global optimum, the search process becomes very slow. In contrast, the gradient descent method can achieve faster convergence speed around the global optimum, and at the same time, the convergence accuracy can be relatively high. Therefore, the proposed hybrid algorithm combines the dynamic particle swarm optimization (DPSO) algorithm with the backpropagation (BP) algorithm, also referred to as the DPSO-BP algorithm, to train the weights of an ANN. In this paper, we intend to show the superiority (time performance and quality of solution) of the proposed hybrid algorithm (DPSO-BP) over other more standard algorithms in neural network training. The algorithms are compared using two different datasets, and the results are simulated.

An Adaptive Block Matching Motion Estimation Method Using Optical Flow (광류를 이용한 적응적인 블록 정합 움직임 추정 기법)

  • Kim, Kyoung-Kyoo;Park, Kyung-Nam
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.13 no.1
    • /
    • pp.57-67
    • /
    • 2008
  • In this paper, we present an adaptive block matching motion estimation using optical flow. In the proposed algorithm, we calculate the temporal and spatial gradient value for each pixel value from tile differential filter, and estimate the optical flow which is used to decide the location and the size of the search region from the gradient values by least square optical flow algorithm. In particular, the proposed algorithm showed a excellent performance with fast and complex motion sequences. From the computer simulation for various motion characteristic sequences. The proposed algorithm shows a significant enhancement of PSNR over previous blocking matching algorithms.

  • PDF

Discrete Optimization of Structural System by Using the Harmony Search Heuristic Algorithm with Penalty Function (벌칙함수를 도입한 하모니서치 휴리스틱 알고리즘 기반 구조물의 이산최적설계법)

  • Jung, Ju-Seong;Choi, Yun-Chul;Lee, Kang-Seok
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.53-62
    • /
    • 2017
  • Many gradient-based mathematical methods have been developed and are in use for structural size optimization problems, in which the cross-sectional areas or sizing variables are usually assumed to be continuous. In most practical structural engineering design problems, however, the design variables are discrete. The main objective of this paper is to propose an efficient optimization method for structures with discrete-sized variables based on the harmony search (HS) meta-heuristic algorithm that is derived using penalty function. The recently developed HS algorithm was conceptualized using the musical process of searching for a perfect state of harmony. It uses a stochastic random search instead of a gradient search so that derivative information is unnecessary. In this paper, a discrete search strategy using the HS algorithm with a static penalty function is presented in detail and its applicability using several standard truss examples is discussed. The numerical results reveal that the HS algorithm with the static penalty function proposed in this study is a powerful search and design optimization technique for structures with discrete-sized members.

Efficient Image Segmentation Using Morphological Watershed Algorithm (형태학적 워터쉐드 알고리즘을 이용한 효율적인 영상분할)

  • Kim, Young-Woo;Lim, Jae-Young;Lee, Won-Yeol;Kim, Se-Yun;Lim, Dong-Hoon
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.4
    • /
    • pp.709-721
    • /
    • 2009
  • This paper discusses an efficient image segmentation using morphological watershed algorithm that is robust to noise. Morphological image segmentation consists of four steps: image simplification, computation of gradient image and watershed algorithm and region merging. Conventional watershed segmentation exhibits a serious weakness for over-segmentation of images. In this paper we present a morphological edge detection methods for detecting edges under noisy condition and apply our watershed algorithm to the resulting gradient images and merge regions using Kolmogorov-Smirnov test for eliminating irrelevant regions in the resulting segmented images. Experimental results are analyzed in both qualitative analysis through visual inspection and quantitative analysis with percentage error as well as computational time needed to segment images. The proposed algorithm can efficiently improve segmentation accuracy and significantly reduce the speed of computational time.

Method of Human Detection using Edge Symmetry and Feature Vector (에지 대칭과 특징 벡터를 이용한 사람 검출 방법)

  • Byun, Oh-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.8
    • /
    • pp.57-66
    • /
    • 2011
  • In this paper, it is proposed for algorithm to detect human efficiently using a edge symmetry and gradient directional characteristics in realtime by the feature extraction in a single input image. Proposed algorithm is composed of three stages, preprocessing, region partition of human candidates, verification of candidate regions. Here, preprocessing stage is strong the image regardless of the intensity and brightness of surrounding environment, also detects a contour with characteristics of human as considering the shape features size and the condition of human for characteristic of human. And stage for region partition of human candidates has separated the region with edge symmetry for human and size in the detected contour, also divided 1st candidates region with applying the adaboost algorithm. Finally, the candidate region verification stage makes excellent the performance for the false detection by verifying the candidate region using feature vector of a gradient for divided local area and classifier. The results of the simulations, which is applying the proposed algorithm, the processing speed of the proposed algorithms is improved approximately 1.7 times, also, the FNR(False Negative Rate) is confirmed to be better 3% than the conventional algorithm which is a single structure algorithm.

An Edge Detection Method for Gray Scale Images Based on their Fuzzy System Representation

  • Moon, Byung-Soo;Lee, Hyun-Chul;Kim, Jang-Yeol
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.283-286
    • /
    • 2001
  • Based on a fuzzy system representation of gray scale images, we derive an edge detection algorithm whose convolution kernel is different from the known kernels such as those of Roberts', Prewitt's or Sobel's gradient. Our fuzzy system representation is an exact representation of the bicubic spline function which represents the gray scale image approximately. Hence the fuzzy system is a continuous function and it provides a natural way to define the gradient and the Laplacian operator. We show that the gradient at grid points can be evaluated by taking the convolution of the image with a 3 3 kernel. We also show that our gradient coupled with the approximate value of the continuous function generates an edge detection method which creates edge images clearer than those by other methods. A few examples of applying our methods are included.

  • PDF

A MODIFIED BFGS BUNDLE ALGORITHM BASED ON APPROXIMATE SUBGRADIENTS

  • Guo, Qiang;Liu, Jian-Guo
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1239-1248
    • /
    • 2010
  • In this paper, an implementable BFGS bundle algorithm for solving a nonsmooth convex optimization problem is presented. The typical method minimizes an approximate Moreau-Yosida regularization using a BFGS algorithm with inexact function and the approximate gradient values which are generated by a finite inner bundle algorithm. The approximate subgradient of the objective function is used in the algorithm, which can make the algorithm easier to implement. The convergence property of the algorithm is proved under some additional assumptions.