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This letter presents a modified Pegasos algorithm for graph-
based dependency parsing. We show that the modified Pegasos 
algorithm outperforms the margin infused relaxed and passive 
aggressive algorithms in three languages. 

Keywords: Dependency parsing, stochastic gradient descent, 
Pegasos. 

I. Introduction 

Dependency parsing has been a growing interest for 
applications such as relation extraction and machine translation. 
Dependency representations of sentences model head-
dependent syntactic relations as edges in a directed graph. For 
example, Fig. 1 shows a dependency graph for the sentence, 
“The dog chased the cat.” 

Many dependency parsers are based on data-driven parsing 
models, which learn to produce dependency graphs for 
sentences solely from an annotated corpus, and can be easily 
ported to any language in which annotated resources exist. 
Most data-driven parsing models proposed in recent years can 
be described as either transition-based or graph-based [1]. In 
graph-based parsing, McDonald and others showed that 
treating dependency parsing as a search for the highest-scoring 
maximum spanning tree (MST) in a directed graph yields 
efficient algorithms for both projective and non-projective trees 
[2]. These models provide state-of-the-art performances across 
multiple languages. They extended the MST parsing 
framework to incorporate higher-order feature representations 
[3], [4]. In their works, the margin infused relaxed algorithm 
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(MIRA) [5], an online large-margin learning algorithm inspired 
by the perceptron, is used to compute model parameters. 
Online learning algorithms provide strong theoretical 
guarantees and run very quickly, but their performance is 
typically inferior to that of batch algorithms. 

An alternative approach for structured prediction is to use 
stochastic gradient decent (SGD) methods. SGD methods use 
approximate gradients estimated from subsets of the training 
data and update the weights of the features in an online fashion. 
For large-scale problems, SGD methods are claimed to be 
sufficiently precise while delivering the best performance 
versus training time trade-off [6]. Among SGD methods, the 
Pegasos algorithm has shown promising performance for 
binary classification support vector machines (SVMs) [7]. The 
Pegasos algorithm shares the simplicity and speed of online 
learning algorithms but is guaranteed to converge to an actual 
SVM solution. 

In this letter, we extend the Pegasos algorithm for graph-based 
dependency parsing. We evaluate our system on three languages 
from the CoNLL-X shared task [8]. We show that our extended 
Pegasos algorithm can produce accurate models quickly. 

 

 

Fig. 1. Example dependency graph. 

root0 The1 dog2 chased3 the4 cat5 

 

II. Graph-Based Dependency Parsing 

We used the same MST unlabeled dependency parsing 
framework proposed in [2]. This framework leads to efficient 
parsing algorithms for both projective and non-projective 
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dependency trees with the Eisner and Chu-Liu-Edmonds 
algorithms, respectively [2], [3]. Following this approach, we 
define the score of an unlabeled dependency tree as  
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where x = x1,…, xn is an input sentence, and y is a dependency 
tree for x. We can view y as a set of tree edges and write 
( , )i j ∈ y to indicate an edge in y from word xi to word xj. 
Consider the example from Fig. 1. The score of this tree would be 

(0,3) (3, 2) (2,1) (3,5) (5, 4).s s s s s+ + + +  

For second-order non-projective MST dependency parsing, 
we followed the approximate algorithm based on the exact 
O(n3) second-order projective Eisner algorithm proposed in [3]. 

III. Large-Margin Training 

McDonald and others extended the MIRA to learning with 
dependency trees [2]. Algorithm 1 gives a pseudocode for the 
MIRA. The algorithm considers a single training instance at 
each update to w. The final weight vector is the average of the 
weight vectors after each iteration. 

 
Algorithm 1. MIRA learning algorithm. 
Training data: 1{( , )}m

i i iS == x y  

1: w0 = 0; v = 0; t = 0
 2: For n = 1, 2,…, N 

3:    For i = 1, 2,…, m 
4:       min ||wt+1-wt || 

s.t. ( , ) ( , ) ( , ),i i i is s L− ≥ ∀ ∈x y x y y y y Y  

5:       v = v+wt+1  
6:       t = t+1 
7: waveraged = v/ (N×m) 
8: Output wt+1 and waveraged 

 
We used the margin rescaling formula of structural SVMs 

[9] for dependency parsing as  
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where xi is a sentence, and L(yi ,y) is a real-valued loss for 
dependency tree y relative to the correct dependency tree yi. 
We define the loss of a dependency tree as the number of 
words that have an incorrect parent. We extend the Pegasos 
algorithm to structural SVMs for graph-based dependency 
parsing. We replace the objective of Pegasos with an 
approximate objective function of structural SVMs by setting 
λ=1/C: 
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Parameter k is the number of examples used for calculating the 
subgradients, and At is the subset of training set S={(xi, yi):  
i=1, 2,…, m}. The subgradient of f (w; At) is 
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If we choose At=S, that is, k=m on each round t, then we obtain 
the subgradient projection method. For the case of k=1, we 
obtain a variant of the stochastic gradient method. 

A pseudocode of the modified Pegasos is depicted in 
algorithm 2. The algorithm receives as input two parameters: T, 
the number of iterations to perform; and k, the number of 
examples to use for calculating the subgradients. Initially, we set 
w1 to any vector whose norm is at most 1 λ . On iteration t, 
the algorithm first chooses set At of size k in S (line 4), finds the 
“most violated” dependency parse tree ˆ iy for (xi, yi) in At (line 
5), sets the learning rate (line 6), calculates wt+1/2 (line 7), and sets 
wt+1 to be the projection of wt+1/2 onto the set { : 1 }λ≤w w  
(line 8). The final weight vector can be the average of the weight 
vectors after each iteration (lines 9 to 10). In line 5, ˆ iy can be 
found using the same inference algorithms, for example the 
Eisner or CLE algorithm, as * arg max ( , )T

if= yy w x y  because 
L(yi, y) decomposes over variable subsets no larger than the 
subsets in the decomposition of f(xi, y). We adapted the Eisner 
algorithm to solve thearg max in line 5. 

Algorithm 2. Modified Pegasos algorithm for dependency parsing 
(Pegasos-DP). 
1: Input: S, λ, T, k 
2: Initialize: Choose w1 s.t. 1 1 λ≤w , v = 0

 
3: For t = 1, 2,…, T 
4:    Choose tA S⊆ , where tA k=  
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 9:     v = v + wt+1 

10: waveraged = v/T 
11: Output: wT+1 and waveraged 
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IV. Experiments 

We demonstrated the effectiveness of our modified Pegasos 
for dependency parsing with experiments on three languages 
from the CoNLL-X shared task: Dutch, Swedish, and Danish 
[8]. All experiments are evaluated using an unlabeled 
attachment score (UAS), utilizing the default settings. We used 
the approximate second-order non-projective dependency 
parsing algorithm and similar features as in [3] and [4]. 

We implemented the modified Pegasos algorithm for the 
training of unlabeled dependency parsing in C++. For 
comparison, we also implemented the MIRA, the passive-
aggressive (PA) algorithm [5], and the 1-slack structural SVM 
[10], [11]. In the experiments, we set k=10. Regularization 
constant λ from {10-2, 3.3×10-2, 10-3, 3.3×10-3, 10-4} was 
chosen by optimization on the test set for all experiments. All 
our experiments were conducted on an Intel Core i5 CPU PC 
with 2.67 GHz and 8 GB of RAM. 

Table 1 shows the performances of the compared systems. 
M&P2006 is a graph-based dependency-parsing model using 
the averaged MIRA proposed in [4]. Nivre2006 is a transition 
model presented in [12]. N&M2008 is a hybrid model that 
combines transition-based and graph-based parsers [1]. 
M&P2006 and Nivre2006 are the two best performing systems 
in the CoNLL-X shared task. MST+MIRA, MST+PA, 
MST+Pegasos-DP, and MST+1-slack S-SVM are our 
dependency parsers using the MIRA, PA, Pegasos-DP, and  
1-slack structural SVM, respectively. When comparing our 
dependency parsers, the Pegasos-DP and 1-slack S-SVM have 
similar performance and outperform the MIRA and the PA 
algorithm. Compared with other systems, Pegasos-DP 
outperforms M&P2006 and Nivre2006, and the performance 
of Pegasos-DP is similar to N&M2008, which is obtained by 
combining M&P2006 and Nivre2006. 

Table 1. UAS for three languages. 

 Dutch Swedish Danish 
MST+MIRA (averaged) 

-baseline 83.9 89.2 90.2 

MST+PA (averaged) 84.3 (+0.4) 89.6 (+0.4) 90.6 (+0.4)

MST+Pegasos-DP 85.0 (+1.1) 90.1 (+0.9) 90.8 (+0.6)
MST+Pegasos-DP 

(averaged) 
85.1 (+1.2) 90.1 (+0.9) 91.0 (+0.8)

MST+1-slack S-SVM 85.0 (+1.1) 90.1 (+0.9) 90.9 (+0.7)

M&P2006 83.6 (-0.3) 88.9 (-0.3) 90.6 (+0.4)

Nivre2006 81.4 (-2.5) 89.5 (+0.3) 89.8 (-0.4)

N&M2008 84.8 (+0.9) 90.5 (+1.3) 91.3 (+1.1)

 

 

Fig. 2. Performances of Pegasos-DP, 1-slack S-SVM, and MIRA 
versus training time. 
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Figure 2 compares the performances of MST+Pegasos-DP, 
MST+MIRA, and MST+1-slack S-SVM in the Dutch data set. 
The Pegasos-DP outperforms the MIRA, but has unstable 
performance. Averaging helps the performance of the MIRA. 
In the Pegasos-DP, averaging does not significantly help the 
performance, but it does smooth the convergence curve. The 
Pegasos-DP and 1-slack S-SVM have similar performance, but 
the Pegasos-DP is much faster than the 1-slack S-SVM. We 
think that this is because the Pegasos-DP shares the speed of 
online learning algorithms but is guaranteed to converge to the 
actual structural SVM solution. 

V. Conclusion 

We proposed a modified Pegasos algorithm for graph-based 
dependency parsing. We showed that the modified Pegasos 
algorithm (Pegasos-DP) outperforms the MIRA and the 
averaged Pegasos-DP has a more stable performance than the 
non-averaged Pegasos-DP. We also showed that the Pegasos-
DP is faster than 1-slack structural SVM. 
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