• 제목/요약/키워드: graded-boundary material

검색결과 356건 처리시간 0.019초

Quasi-3D static analysis of two-directional functionally graded circular plates

  • Wu, Chih-Ping;Yu, Lu-Ting
    • Steel and Composite Structures
    • /
    • 제27권6호
    • /
    • pp.789-801
    • /
    • 2018
  • A weak-form formulation of finite annular prism methods (FAPM) based on Reissner's mixed variational theorem (RMVT), is developed for the quasi three-dimensional (3D) static analysis of two-directional functionally graded (FG) circular plates with various boundary conditions and under mechanical loads. The material properties of the circular plate are assumed to obey either a two-directional power-law distribution of the volume fractions of the constituents through the radial-thickness surface or an exponential function distribution varying doubly exponentially through it. These FAPM solutions of the loaded FG circular plates with both simply-supported and clamped edges are in excellent agreement with the solutions obtained using the 3D analytical approach and two-dimensional advanced plate theories available in the literature.

Buckling analysis of arbitrary two-directional functionally graded nano-plate based on nonlocal elasticity theory using generalized differential quadrature method

  • Emadi, Maryam;Nejad, Mohammad Zamani;Ziaee, Sima;Hadi, Amin
    • Steel and Composite Structures
    • /
    • 제39권5호
    • /
    • pp.565-581
    • /
    • 2021
  • In this paper the buckling analysis of the nanoplate made of arbitrary bi-directional functionally graded (BDFG) materials with small scale effects are investigated. To study the small-scale effects on buckling load, the Eringen's nonlocal theory is applied. Employing the principle of minimum potential energy, the governing equations are obtained. Generalize differential quadrature method (GDQM) is used to solve the governing equations for various boundary conditions to obtain the buckling load of BDFG nanoplates. These models can degenerate into the classical models if the material length scale parameter is taken to be zero. Comparison between the results of GDQ method and other papers for buckling analysis of a simply supported rectangular nano FGM plate reveals the accuracy of GDQ method. At the end some numerical results are presented to study the effects of material length scale parameter, plate thickness, aspect ratio, Poisson's ratio boundary condition and side to thickness ratio on size dependent Frequency.

An efficient and simple shear deformation theory for free vibration of functionally graded rectangular plates on Winkler-Pasternak elastic foundations

  • Abdelbari, Salima;Fekrar, Abdelkader;Heireche, Houari;Said, Hayat;Tounsi, Abdelouahed;Adda Bedia, E.A.
    • Wind and Structures
    • /
    • 제22권3호
    • /
    • pp.329-348
    • /
    • 2016
  • This work presents a simple hyperbolic shear deformation theory for analysis of functionally graded plates resting on elastic foundation. The proposed model contains fewer number of unknowns and equations of motion than the first-order shear deformation model, but the transverse shear stresses account for a hyperbolic variation and respect the tangential stress-free boundary conditions on the plate boundary surface without introducing shear correction factors. Equations of motion are obtained from Hamilton's principle. The Navier-type analytical solutions for simply-supported plates are compared with the existing solutions to demonstrate the accuracy of the proposed theory.

An analytical approach for buckling of functionally graded plates

  • Daouadji, Tahar Hassaine;Adim, Belkacem
    • Advances in materials Research
    • /
    • 제5권3호
    • /
    • pp.141-169
    • /
    • 2016
  • In this paper, an efficient and simple refined theory is presented for buckling analysis of functionally graded plates. The theory, which has strong similarity with classical plate theory in many aspects, accounts for a quadratic variation of the transverse shear strains across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The mechanical properties of functionally graded material are assumed to vary according to a power law distribution of the volume fraction of the constituents. Governing equations are derived from the principle of minimum total potential energy. The closed-form solutions of rectangular plates are obtained. Comparison studies are performed to verify the validity of present results. The effects of loading conditions and variations of power of functionally graded material, modulus ratio, aspect ratio, and thickness ratio on the critical buckling load of functionally graded plates are investigated and discussed.

Elasticity solutions for a uniformly loaded annular plate of functionally graded materials

  • Yang, B.;Ding, H.J.;Chen, W.Q.
    • Structural Engineering and Mechanics
    • /
    • 제30권4호
    • /
    • pp.501-512
    • /
    • 2008
  • The axisymmetric problem of a functionally graded annular plate is considered by extending the theory of functionally graded materials plates suggested by Mian and Spencer (1998). In particular, their expansion formula for displacements is adopted and the hypothesis that the material parameters can vary along the thickness direction in an arbitrary continuous fashion is retained. However, their analysis is extended here in two aspects. First, the material is assumed to be transversely isotropic, rather than isotropic. Second, the plate is no longer tractions-free on the top and bottom surfaces, but subject to uniform loads applied on the surfaces. The elasticity solutions are given for a uniformly loaded annular plate of functionally graded materials for a total of six different boundary conditions. Numerical results are given for a simply supported functionally graded annular plate, and good agreement with those by the classical plate theory is obtained.

An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions

  • Abdelaziz, Hadj Henni;Meziane, Mohamed Ait Amar;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Mahmoud, S.R.;Alwabli, Afaf S.
    • Steel and Composite Structures
    • /
    • 제25권6호
    • /
    • pp.693-704
    • /
    • 2017
  • In this research, a simple hyperbolic shear deformation theory is developed and applied for the bending, vibration and buckling of powerly graded material (PGM) sandwich plate with various boundary conditions. The displacement field of the present model is selected based on a hyperbolic variation in the in-plane displacements across the plate's thickness. By splitting the deflection into the bending and shear parts, the number of unknowns and equations of motion of the present formulation is reduced and hence makes them simple to use. Equations of motion are obtained from Hamilton's principle. Numerical results for the natural frequencies, deflections and critical buckling loads of several types of powerly graded sandwich plates under various boundary conditions are presented. The accuracy of the present formulation is demonstrated by comparing the computed results with those available in the literature. As conclusion, this theory is as accurate as other theories available in the literature and so it becomes more attractive due to smaller number of unknowns.

An efficient shear deformation theory for wave propagation of functionally graded material plates

  • Boukhari, Ahmed;Atmane, Hassen Ait;Tounsi, Abdelouahed;Adda Bedia, E.A.;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • 제57권5호
    • /
    • pp.837-859
    • /
    • 2016
  • An efficient shear deformation theory is developed for wave propagation analysis of an infinite functionally graded plate in the presence of thermal environments. By dividing the transverse displacement into bending and shear parts, the number of unknowns and governing equations of the present theory is reduced, and hence, makes it simple to use. The thermal effects and temperature-dependent material properties are both taken into account. The temperature field is assumed to be a uniform distribution over the plate surface and varied in the thickness direction only. Material properties are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The governing equations of the wave propagation in the functionally graded plate are derived by employing the Hamilton's principle and the physical neutral surface concept. There is no stretching.bending coupling effect in the neutral surface-based formulation, and consequently, the governing equations and boundary conditions of functionally graded plates based on neutral surface have the simple forms as those of isotropic plates. The analytic dispersion relation of the functionally graded plate is obtained by solving an eigenvalue problem. The effects of the volume fraction distributions and temperature on wave propagation of functionally graded plate are discussed in detail. It can be concluded that the present theory is not only accurate but also simple in predicting the wave propagation characteristics in the functionally graded plate. The results carried out can be used in the ultrasonic inspection techniques and structural health monitoring.

Vibration behavior of bi-dimensional functionally graded beams

  • Selmi, Abdellatif
    • Structural Engineering and Mechanics
    • /
    • 제77권5호
    • /
    • pp.587-599
    • /
    • 2021
  • Based on Euler-Bernoulli beam theory and continuous element method, the free vibration of bi-dimensional functionally graded beams is investigated. It is assumed that the material properties vary exponentially along the beam thickness and length. The characteristic frequency equations of beams with different boundary conditions are obtained by transfer matrix method. The validity of the proposed method is assessed through comparison with available results. Parametric studies are carried out to analyze the influences of the gradient indexes and the beam slenderness ratio on the natural frequencies of bi-dimensional functionally graded beams.

Thermal stability of functionally graded sandwich plates using a simple shear deformation theory

  • Bouderba, Bachir;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • 제58권3호
    • /
    • pp.397-422
    • /
    • 2016
  • In the present work, a simple first-order shear deformation theory is developed and validated for a variety of numerical examples of the thermal buckling response of functionally graded sandwich plates with various boundary conditions. Contrary to the conventional first-order shear deformation theory, the present first-order shear deformation theory involves only four unknowns and has strong similarities with the classical plate theory in many aspects such as governing equations of motion, and stress resultant expressions. Material properties and thermal expansion coefficient of the sandwich plate faces are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. The thermal loads are considered as uniform, linear and non-linear temperature rises within the thickness direction. The results reveal that the volume fraction index, loading type and functionally graded layers thickness have significant influence on the thermal buckling of functionally graded sandwich plates. Moreover, numerical results prove that the present simple first-order shear deformation theory can achieve the same accuracy of the existing conventional first-order shear deformation theory which has more number of unknowns.

레이저빔에 의한 조성구배계면 Ni/Steel 재료의 제조 (Fabrication of Graded-Boundary Ni/Steel Material by Laser Beam)

  • 안재모;김도훈
    • 한국레이저가공학회지
    • /
    • 제2권1호
    • /
    • pp.22-29
    • /
    • 1999
  • This work was carried out as a fundamental experiment to fabricate a Graded-Boundary Ni/Steel material using a laser beam. A Ni sheet was placed on a steel substrate, and then a series of high power $CO_2$ laser beams were irradiated on the surface in order to produce a homogeneous alloyed layer. The processing parameters were : 4 ㎾ laser power, 2m/min traverse speeds, -2mm defocuing, 17 l/min sheiding gas flow rates. The sequential repetition of the laser surface alloying treatment up to 4 times, resulted in about 5mm thick of fair compositional gradient systems. In order to determine the microstructure, phase and compositional profiles in this material, optical microscopy, XRD and EDS were used. The compositions varied from 66% to 0% for Ni and 34% to 100% for Fe in this material The microstructures were typical morphologies of rapid solidification and solid-state cooling. Since compressive stress was formed in the heat affected region due to martensitic transformation, while relative tensile stress was developed in the alloyed region, cracks were formed between the alloyed region and the substrate region.

  • PDF