• Title/Summary/Keyword: graded

Search Result 2,439, Processing Time 0.03 seconds

Three-dimensional free vibration analysis of functionally graded fiber reinforced cylindrical panels using differential quadrature method

  • Yas, M.H.;Aragh, B. Sobhani;Heshmati, M.
    • Structural Engineering and Mechanics
    • /
    • v.37 no.5
    • /
    • pp.529-542
    • /
    • 2011
  • Three dimensional solutions for free vibrations analysis of functionally graded fiber reinforced cylindrical panel are presented, using differential quadrature method (DQM). The orthotropic panel is simply supported at the edges and is assumed to have an arbitrary variation of reinforcement volume fraction in the radial direction. Suitable displacement functions that identically satisfy the simply supported boundary condition are used to reduce the equilibrium equations to a set of coupled ordinary differential equations with variable coefficients, which can be solved by differential quadrature method to obtain natural frequencies. The main contribution of this work is presenting useful results for continuous grading of fiber reinforcement in the thickness direction of a cylindrical panel and comparison with similar discrete laminate composite ones. Results indicate that significant improvement is found in natural frequency of a functionally graded fiber reinforced composite panel due to the reduction in spatial mismatch of material properties.

A novel solution for thick-walled cylinders made of functionally graded materials

  • Chen, Y.Z.
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1503-1520
    • /
    • 2015
  • This paper provides a novel solution for thick-walled cylinders made of functionally graded materials (FGMs). In the formulation, the cylinder is divided into N layers. On the individual layer, the Young's modulus is assumed to be a constant. For an individual layer, two undetermined constants are involved in the elastic solution. Those undetermined coefficients can be evaluated from the continuation condition along interfaces of layers and the boundary conditions at the inner surface and outer surface of cylinder. Finally, the solution for thick-walled cylinders made of functionally graded materials is obtainable. This paper provides several numerical examples which are useful for engineer to design a cylinder made of FGMs.

Wave propagation in functionally graded composite cylinders reinforced by aggregated carbon nanotube

  • Moradi-Dastjerdi, Rasool
    • Structural Engineering and Mechanics
    • /
    • v.57 no.3
    • /
    • pp.441-456
    • /
    • 2016
  • This work reports wave propagation in the nanocomposite cylinders that reinforced by straight single-walled carbon nanotubes based on a mesh-free method. Moving least square shape functions have been used for approximation of displacement field in weak form of motion equation. The straight carbon nanotubes (CNTs) are assumed to be oriented in specific or random directions or locally aggregated into some clusters. In this simulation, an axisymmetric model is used and also the volume fractions of the CNTs and clusters are assumed to be functionally graded along the thickness. So, material properties of the carbon nanotube reinforced composite cylinders are variable and estimated based on the Eshelby-Mori-Tanaka approach. The effects of orientation, aggregation and volume fractions of the functionally graded clusters and CNTs on dynamic behavior of nanocomposite cylinders are studied. This study results show that orientation and aggregation of CNTs have significant effects on the effective stiffness and dynamic behaviors.

Nonlinear cylindrical bending analysis of E-FGM plates with variable thickness

  • Kaci, Abdelhakim;Belakhdar, Khalil;Tounsi, Abdelouahed;Bedia, El Abbes Adda
    • Steel and Composite Structures
    • /
    • v.16 no.4
    • /
    • pp.339-356
    • /
    • 2014
  • This paper presents a study of the nonlinear cylindrical bending of an exponential functionally graded plate (simply called E-FG) with variable thickness. The plate is subjected to uniform pressure loading and his geometric nonlinearity is introduced in the strain-displacement equations based on Von-Karman assumptions. The material properties of functionally graded plates, except the Poisson's ratio, are assumed to vary continuously through the thickness of the plate in accordance with the exponential law distribution; and the solution is obtained using Hamilton's principle for constant plate thickness. In order to analyze functionally graded plate with variable thickness, a numerical solution using finite difference method is used, where parabolic variation of the plate thickness is studied. The results for E-FG plates are given in dimensionless graphical forms; and the effects of material and geometric properties on displacements and normal stresses through the thickness are determined.

Higher order impact analysis of sandwich panels with functionally graded flexible cores

  • Fard, K. Malekzadeh
    • Steel and Composite Structures
    • /
    • v.16 no.4
    • /
    • pp.389-415
    • /
    • 2014
  • This study deals with dynamic model of composite sandwich panels with functionally graded flexible cores under low velocity impacts of multiple large or small masses using a new improved higher order sandwich panel theory (IHSAPT). In-plane stresses were considered for the functionally graded core and face sheets. The formulation was based on the first order shear deformation theory for the composite face sheets and polynomial description of the displacement fields in the core that was based on the second Frostig's model. Fully dynamic effects of the functionally graded core and face-sheets were considered in this study. Impacts were assumed to occur simultaneously and normally over the top and/or bottom of the face-sheets with arbitrary different masses and initial velocities. The contact forces between the panel and impactors were treated as internal forces of the system. Nonlinear contact stiffness was linearized with a newly presented improved analytical method in this paper. The results were validated by comparing the analytical, numerical and experimental results published in the latest literature.

Dynamic Magneto-mechanical Behavior of Magnetization-graded Ferromagnetic Materials

  • Chen, Lei;Wang, Yao
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.215-220
    • /
    • 2014
  • This study investigates the dynamic magneto-mechanical behavior of magnetization-graded ferromagnetic materials Terfenol-D/FeCuNbSiB (MF). We measure the dynamic magneto-mechanical properties as a function of the DC bias magnetic field ($H_{dc}$). Our experimental results show that these dynamic magneto-mechanical properties are strongly dependent on the DC bias magnetic field. Furthermore, the dynamic strain coefficient, electromechanical resonance frequency, Young's moduli, and mechanical quality factor of Terfenol-D/FeCuNbSiB are greater than those of Terfenol-D under a lower DC bias magnetic field. The dynamic strain coefficient increases by a factor of between one and three, under the same DC bias magnetic field. In particular, the dynamic strain coefficient of Terfenol-D/FeCuNbSiB at zero bias achieves 48.6 nm/A, which is about 3.05 times larger than that of Terfenol-D. These good performances indicate that magnetization-graded ferromagnetic materials show promise for application in magnetic sensors.

Interfacial stresses in RC beam bonded with a functionally graded material plate

  • Daouadji, Tahar Hassaine;Chedad, Abdebasset;Adim, Belkacem
    • Structural Engineering and Mechanics
    • /
    • v.60 no.4
    • /
    • pp.693-705
    • /
    • 2016
  • Functionally graded material (FGM) plates can be bonded to the soffit of a beam as a means of retrofitting the RC beam. In such plated beams, tensile forces develop in the bonded plate and these have to be transferred to the original beam via interfacial shear and normal stresses. In this paper, an interfacial stress analysis is presented for simply supported concrete beam bonded with a functionally graded material FGM plate. This new solution is intended for application to beams made of all kinds of materials bonded with a thin plate, while all existing solutions have been developed focusing on the strengthening of reinforced concrete beams, which allowed the omission of certain terms. It is shown that both the normal and shear stresses at the interface are influenced by the material and geometry parameters of the composite beam. This research is helpful for the understanding on mechanical behavior of the interface and design of the FGM-RC hybrid structures.

Dynamic Response Analysis of Rotating Functionally Graded Thin-Walled Blades Exposed to Steady High Temperature and External Excitation (고온에서 외부 가진력을 받는 회전하는 경사기능 박간 블레이드의 동적응답 해석)

  • Na Sunsoo;Oh Byungyoung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.7 s.238
    • /
    • pp.976-982
    • /
    • 2005
  • This paper is dedicated to the thermoelastic modeling and dynamic response of the rotating blades made of functionally graded ceramic-metal based materials. The blades are modeled as non-uniform thin walled beams fixed at the hub with various selected values of setting angles and pre-twisted angles. In this study, the blade is rotating with a constant angular velocity and exposed to a steady temperature field as well as external excitation. Moreover, the effect of the temperature gradient through the blade thickness is considered. Material properties are graded in the thickness direction of the blade according to the volume fraction power law distribution. The numerical results highlight the effects of the volume fraction, temperature gradient, taper ratio, setting angle and pre-twisted angle on the dynamic response of bending-bending coupled beam characteristics and pertinent conclusions are outlined.

Magneto-thermo-elastic response of exponentially graded piezoelectric hollow spheres

  • Allam, M.N.M.;Tantawy, R.;Zenkour, A.M.
    • Advances in Computational Design
    • /
    • v.3 no.3
    • /
    • pp.303-318
    • /
    • 2018
  • This article presents a semi-analytical solution for an exponentially graded piezoelectric hollow sphere. The sphere interacts with electric displacement, elastic deformations, electric potentials, magneto-thermo-elasticity, and hygrothermal influences. The hollow sphere may be standing under both mechanical and electric potentials. Electro-magneto-elastic behavior of magnetic field vector can be described in the hollow sphere. All material, thermal and magnetic properties of hollow sphere are supposed to be graded in radial direction. A semi-analytical technique is improved to deduce all fields in which different boundary conditions for radial stress and electric potential are presented. Numerical examples for radial displacement, radial and hoop stresses, and electric potential are investigated. The influence of many parameters is studied. It is seen that the gradation of all material, thermal and magnetic properties has particular effectiveness in many applications of modern technology.

Exact analyses for two kinds of piezoelectric hollow cylinders with graded properties

  • Zhang, Taotao;Shi, Zhifei
    • Smart Structures and Systems
    • /
    • v.6 no.8
    • /
    • pp.975-989
    • /
    • 2010
  • Based on the theory of piezo-elasticity, the paper obtains the exact solutions of functionally graded piezoelectric hollow cylinders with different piezoelectric parameter $g_{31}$. Two kinds of piezoelectric hollow cylinders are considered herein. One is a multi-layered cylinder with different parameter $g_{31}$ in different layers; the other is a continuously graded cylinder with arbitrarily variable $g_{31}$. By using the Airy stress function method with plane strain assumptions, the exact solutions of the mechanic and electrical components of both cylinders are obtained when they are subjected to external voltage (actuator) and pressure (sensor), simultaneously. Furthermore, good agreement is achieved between the theoretical and numerical results, and useful conclusions are given.