Browse > Article
http://dx.doi.org/10.12989/sss.2010.6.8.975

Exact analyses for two kinds of piezoelectric hollow cylinders with graded properties  

Zhang, Taotao (School of Transportation Science and Engineering, Beihang University)
Shi, Zhifei (School of Civil Engineering, Beijing Jiaotong University)
Publication Information
Smart Structures and Systems / v.6, no.8, 2010 , pp. 975-989 More about this Journal
Abstract
Based on the theory of piezo-elasticity, the paper obtains the exact solutions of functionally graded piezoelectric hollow cylinders with different piezoelectric parameter $g_{31}$. Two kinds of piezoelectric hollow cylinders are considered herein. One is a multi-layered cylinder with different parameter $g_{31}$ in different layers; the other is a continuously graded cylinder with arbitrarily variable $g_{31}$. By using the Airy stress function method with plane strain assumptions, the exact solutions of the mechanic and electrical components of both cylinders are obtained when they are subjected to external voltage (actuator) and pressure (sensor), simultaneously. Furthermore, good agreement is achieved between the theoretical and numerical results, and useful conclusions are given.
Keywords
functionally graded material (FGM); ring actuator; multi-layered; piezoelectric material;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
  • Reference
1 Angelino, M.R. and Washington, G.N. (2002), "Design and construction of a piezoelectric point actuated active aperture antenna", J. Intel. Mat. Syst. Str., 13(2-3), 125-136.   DOI
2 Chaudhry, Z., Lalande, F. and Rogers, C.A. (1994), "Special considerations in the modeling of induced strain actuator patches bonded to shell structures", Proc. SPIE, 2190, 563-570.
3 Crawley, E.F. (1994), "Intelligent structures for aerospace: a technology overview and assessment", AIAA J., 32(8), 1689-1699.   DOI   ScienceOn
4 Hauke, T., Kouvatov, A., Steinhausen, R., Seifert, W., Beige, H., Langhammer, H.T. and Abicht, H.P. (2000), "Bending behavior of functionally gradient materials", Ferroelectrics, 238(1), 195-202.   DOI
5 Ichinose, N., Miyamoto, N. and Takahashi, S. (2004), "Ultrasonic transducers with functionally graded piezoelectric ceramics", J. Eur. Ceram. Soc., 24(6), 1681-1685.   DOI   ScienceOn
6 Ikeda, T. (1990), Fundamentals of piezoelectricity, Oxford University Press, USA.
7 Jayachandran, V., King, P., Meyer, N.E., Li, F.J., Petrova, M., Westervelt, M.A., Hirsh, S.M. and Sun, J.Q. (1999), "Real-time feedforward control of low-frequency interior noise using shallow spherical shell piezoceramic actuators", Smart Mater. Struct., 8(5), 579-584.   DOI   ScienceOn
8 Kouvatov, A., Steinhausen, R., Seifert, W., Hauke, T., Langhammer, H.T., Beige, H. and Abicht, H.P. (1999), "Comparison between bimorphic and polymorphic bending devices", J. Eur. Ceram. Soc., 19(6-7), 1153-1156.   DOI   ScienceOn
9 Kruusing, A. (2000), "Analysis and optimization of loaded cantilever beam microactuators", Smart Mater. Struct., 9(2), 186-196.   DOI   ScienceOn
10 Lalande, F., Chaudhry, Z. and Rogers, C.A. (1995), An experimental study of the actuation authority of rings and shells, AIAA Paper No. 95-1099.
11 Larson, P.H. and Vinson, J.R. (1993), "The use of piezoelectric materials in curved beams and rings", Proceedings of the 1993 ASME Winter Annual Meeting, New Orleans, LA, USA.
12 Liu, C.W. and Taciroglu, E. (2007), "Numerical analysis of end effects in laminated piezoelectric circular cylinders", Comput. Method. Appl. M., 196(17-20), 2173-2186.   DOI   ScienceOn
13 Liu, T.T. and Shi, Z.F. (2004), "Bending behavior of functionally gradient piezoelectric cantilever", Ferroelectrics, 308, 43-51.   DOI   ScienceOn
14 Marcus, M.A. (1984), "Performance characteristics of piezoelectric polymer flexure mode devices", Ferroelectrics, 57(1-4), 203-220.   DOI
15 Rossi, A., Liang, C. and Rogers, C.A. (1993), "Impedance modeling of piezoelectric actuator-driven systems: an application to cylindrical ring structures", Proceedings of the 34th AIAA/ASME/ASCE/AHS/ASC Structures, La Jolla, CA, USA, April.
16 Shi, Z.F. and Chen, Y. (2004), "Functionally graded piezoelectric cantilever under load", Arch. Appl. Mech., 74(3-4), 237-247.   DOI
17 Ruan, X.P., Danforth, S.C., Safari, A. and Chou, T.W. (2000), "Saint-Venant end effects in piezoceramic materials", Int. J. Solids Struct., 37(19), 2625-2637.   DOI   ScienceOn
18 Shi, Z.F. (2002), "General solution of a density functionally gradient piezoelectric cantilever and its applications", Smart Mater. Struct., 11(1), 122-129.   DOI   ScienceOn
19 Shi, Z.F. (2005), "Bending behavior of piezoelectric curved actuator", Smart Mater. Struct., 14, 835-842.   DOI   ScienceOn
20 Shi, Z.F. and Zhang, T.T. (2008), "Bending analysis of a piezoelectric curved actuator with a generally graded property for piezoelectric parameter", Smart Mater. Struct., 17(4), 045018 (7pp).   DOI   ScienceOn
21 Sonti, V.R. and Jones, J.D. (1996), "Curved piezoactuator model for active vibration control of cylindrical shells", AIAA J., 34(5), 1034-1040.   DOI
22 Taya, M., Almajid, A.A., Dunn, M. and Takahashi, H. (2003), "Design of bimorph piezo-composite actuators with functionally graded microstructure", Sensor. Actuat. A-Phys., 107, 248-260.   DOI   ScienceOn
23 Tzou, H.S. and Gadre, M. (1989), "Theoretical analysis of a multi-layered thin shell coupled with piezoelectric actuators for distributed vibration controls", J. Sound Vib., 132(3), 433-450.   DOI   ScienceOn
24 Wu, C.C.M., Kahn, M. and Moy, W. (1996), "Piezoelectric ceramics with functional gradients: a new application in material design", J. Am. Ceram. Soc., 79(3), 809-812.
25 Yang, J.S. (2007), "One-dimensional equations for planar piezoelectric curved bars", IEEE T. Ultrason. Ferr., 54(10), 2202-2207.   DOI
26 Zhang, T.T. and Shi, Z.F. (2006), "Two-dimensional exact analysis for piezoelectric curved actuators", J. Micromech. Microeng., 16(3), 640-647.   DOI   ScienceOn
27 Zhu, X.H. and Meng, Z.Y. (1995), "Operational principle, fabrication and displacement characteristic of a functionally gradient piezoelectric ceramic actuator", Sensor. Actuat. A-Phys., 48(3), 169-176.   DOI   ScienceOn