• 제목/요약/키워드: graded

검색결과 2,451건 처리시간 0.023초

Dynamic analysis of functionally graded (FG) nonlocal strain gradient nanobeams under thermo-magnetic fields and moving load

  • Alazwari, Mashhour A.;Esen, Ismail;Abdelrahman, Alaa A.;Abdraboh, Azza M.;Eltaher, Mohamed A.
    • Advances in nano research
    • /
    • 제12권3호
    • /
    • pp.231-251
    • /
    • 2022
  • Dynamic behavior of temperature-dependent Reddy functionally graded (RFG) nanobeam subjected to thermomagnetic effects under the action of moving point load is carried out in the present work. Both symmetric and sigmoid functionally graded material distributions throughout the beam thickness are considered. To consider the significance of strain-stress gradient field, a material length scale parameter (LSP) is introduced while the significance of nonlocal elastic stress field is considered by introducing a nonlocal parameter (NP). In the framework of the nonlocal strain gradient theory (NSGT), the dynamic equations of motion are derived through Hamilton's principle. Navier approach is employed to solve the resulting equations of motion of the functionally graded (FG) nanoscale beam. The developed model is verified and compared with the available previous results and good agreement is observed. Effects of through-thickness variation of FG material distribution, beam aspect ratio, temperature variation, and magnetic field as well as the size-dependent parameters on the dynamic behavior are investigated. Introduction of the magnetic effect creates a hardening effect; therefore, higher values of natural frequencies are obtained while smaller values of the transverse deflections are produced. The obtained results can be useful as reference solutions for future dynamic and control analysis of FG nanobeams reinforced nanocomposites under thermomagnetic effects.

Nonlinear analysis of two-directional functionally graded doubly curved panels with porosities

  • Kumar, H.S. Naveen;Kattimani, Subhaschandra
    • Structural Engineering and Mechanics
    • /
    • 제82권4호
    • /
    • pp.477-490
    • /
    • 2022
  • This article investigates the nonlinear behavior of two-directional functionally graded materials (TDFGM) doubly curved panels with porosities for the first time. An improved and effectual approach is established based on the improved first-order shear deformation shell theory (IFSDST) and von Karman's type nonlinearity. The IFSDST considers the effects of shear deformation without the need for a shear correction factor. The composition of TDFGM constitutes four different materials, and the modified power-law function is employed to vary the material properties continuously in both thickness and longitudinal directions. A nonlinear finite element method in conjunction with Hamilton's principle is used to obtain the governing equations. Then, the direct iterative method is incorporated to accomplish the numerical results using the frequency-amplitude, nonlinear central deflection relations. Finally, the influence of volume fraction grading indices, porosity distributions, porosity volume, curvature ratio, thickness ratio, and aspect ratio provides a thorough insight into the linear and nonlinear responses of the porous curved panels. Meanwhile, this study emphasizes the influence of the volume fraction gradation profiles in conjunction with the various material and geometrical parameters on the linear frequency, nonlinear frequency, and deflection of the TDFGM porous shells. The numerical analysis reveals that the frequencies and nonlinear deformations can be significantly regulated by changing the volume fraction gradation profiles in a specified direction with an appropriate combination of materials. Hence, TDFGM panels can overcome the drawbacks of the functionally graded materials with a gradation of properties in a single direction.

An efficient C1 beam element via multi-scale material adaptable shape function

  • El-Ashmawy, A.M.;Xu, Yuanming
    • Advances in nano research
    • /
    • 제13권4호
    • /
    • pp.351-368
    • /
    • 2022
  • Recently, promising structural technologies like multi-function, ultra-load bearing capacity and tailored structures have been put up for discussions. Finite Element (FE) modelling is probably the best-known option capable of treating these superior properties and multi-domain behavior structures. However, advanced materials such as Functionally Graded Material (FGM) and nanocomposites suffer from problems resulting from variable material properties, reinforcement aggregation and mesh generation. Motivated by these factors, this research proposes a unified shape function for FGM, nanocomposites, graded nanocomposites, in addition to traditional isotropic and orthotropic structural materials. It depends not only on element length but also on the beam's material properties and geometric characteristics. The systematic mathematical theory and FE formulations are based on the Timoshenko beam theory for beam structure. Furthermore, the introduced element achieves C1 degree of continuity. The model is proved to be convergent and free-off shear locking. Moreover, numerical results for static and free vibration analysis support the model accuracy and capabilities by validation with different references. The proposed technique overcomes the issue of continuous properties modelling of these promising materials without discarding older ones. Therefore, introduced benchmark improvements on the FE old concept could be extended to help the development of new software features to confront the rapid progress of structural materials.

Stochastic buckling quantification of porous functionally graded cylindrical shells

  • Trinh, Minh-Chien;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • 제44권5호
    • /
    • pp.651-676
    • /
    • 2022
  • Most of the experimental, theoretical, and numerical studies on the stability of functionally graded composites are deterministic, while there are full of complex interactions of variables with an inherently probabilistic nature, this paper presents a non-intrusive framework to investigate the stochastic nonlinear buckling behaviors of porous functionally graded cylindrical shells exposed to inevitable source-uncertainties. Euler-Lagrange equations are theoretically derived based on the three variable refined shear deformation theory. Closed-form solutions for the shell buckling loads are achieved by solving the deterministic eigenvalue problems. The analytical results are verified with numerical results obtained from finite element analyses that are conducted in the commercial software ABAQUS. The non-intrusive framework is completed by integrating the Monte Carlo simulation with the verified closed-form solutions. The convergence studies are performed to determine the effective pseudorandom draws of the simulation. The accuracy and efficiency of the framework are verified with statistical results that are obtained from the first and second-order perturbation techniques. Eleven cases of individual and compound uncertainties are investigated. Sensitivity analyses are conducted to figure out the five cases that have profound perturbative effects on the shell buckling loads. Complete probability distributions of the first three critical buckling loads are completely presented for each profound uncertainty case. The effects of the shell thickness, volume fraction index, and stochasticity degree on the shell buckling load under compound uncertainties are studied. There is a high probability that the shell has non-unique buckling modes in stochastic environments, which should be known for reliable analysis and design of engineering structures.

Static analysis of 2D-FG nonlocal porous tube using gradient strain theory and based on the first and higher-order beam theory

  • Xiaozhong Zhang;Jianfeng Li;Yan Cui;Mostafa Habibi;H. Elhosiny Ali;Ibrahim Albaijan;Tayebeh Mahmoudi
    • Steel and Composite Structures
    • /
    • 제49권3호
    • /
    • pp.293-306
    • /
    • 2023
  • This article focuses on the study of the buckling behavior of two-dimensional functionally graded (2D-FG) nanosize tubes, including porosity, based on the first shear deformation and higher-order theory of the tube. The nano-scale tube is simulated using the nonlocal gradient strain theory, and the general equations and boundary conditions are derived using Hamilton's principle for the Zhang-Fu's tube model (as a higher-order theory) and Timoshenko beam theory. Finally, the derived equations are solved using a numerical method for both simply-supported and clamped boundary conditions. A parametric study is performed to investigate the effects of different parameters, such as axial and radial FG power indices, porosity parameter, and nonlocal gradient strain parameters, on the buckling behavior of the bi-dimensional functionally graded porous tube. Keywords: Nonlocal strain gradient theory; buckling; Zhang-Fu's tube model; Timoshenko theory; Two-dimensional functionally graded materials; Nanotubes; Higher-order theory.

An efficient numerical model for free vibration of temperature-dependent porous FG nano-scale beams using a nonlocal strain gradient theory

  • Tarek Merzouki;Mohammed SidAhmed Houari
    • Structural Engineering and Mechanics
    • /
    • 제90권1호
    • /
    • pp.1-18
    • /
    • 2024
  • The present study conducts a thorough analysis of thermal vibrations in functionally graded porous nanocomposite beams within a thermal setting. Investigating the temperature-dependent material properties of these beams, which continuously vary across their thickness in accordance with a power-law function, a finite element approach is developed. This approach utilizes a nonlocal strain gradient theory and accounts for a linear temperature rise. The analysis employs four different patterns of porosity distribution to characterize the functionally graded porous materials. A novel two-variable shear deformation beam nonlocal strain gradient theory, based on trigonometric functions, is introduced to examine the combined effects of nonlocal stress and strain gradient on these beams. The derived governing equations are solved through a 3-nodes beam element. A comprehensive parametric study delves into the influence of structural parameters, such as thicknessratio, beam length, nonlocal scale parameter, and strain gradient parameter. Furthermore, the study explores the impact of thermal effects, porosity distribution forms, and material distribution profiles on the free vibration of temperature-dependent FG nanobeams. The results reveal the substantial influence of these effects on the vibration behavior of functionally graded nanobeams under thermal conditions. This research presents a finite element approach to examine the thermo-mechanical behavior of nonlocal temperature-dependent FG nanobeams, filling the gap where analytical results are unavailable.

Wave propagation of bi-directional porous FG beams using Touratier's higher-order shear deformation beam theory

  • Slimane Debbaghi;Mouloud Dahmane;Mourad Benadouda;Hassen Ait Atmane;Nourddine Bendenia;Lazreg Hadji
    • Coupled systems mechanics
    • /
    • 제13권1호
    • /
    • pp.43-60
    • /
    • 2024
  • This work presents an analytical approach to investigate wave propagation in bi-directional functionally graded cantilever porous beam. The formulations are based on Touratier's higher-order shear deformation beam theory. The physical properties of the porous functionally graded material beam are graded through the width and thickness using a power law distribution. Two porosities models approximating the even and uneven porosity distributions are considered. The governing equations of the wave propagation in the porous functionally graded beam are derived by employing the Hamilton's principle. Closed-form solutions for various parameters and porosity types are obtained, and the numerical results are compared with those available in the literature.The numerical results show the power law index, number of wave, geometrical parameters and porosity distribution models affect the dynamic of the FG beam significantly.

침입 감지기능을 가진 다중모드 GRIN(graded-index) 광섬유 내에서의 광파의 전파 (Light Propagation in Multimode GRIN(graded-index) Fibers with Intrusion Sensing Capability)

  • 손영호
    • 센서학회지
    • /
    • 제11권5호
    • /
    • pp.273-278
    • /
    • 2002
  • 광섬유의 침입 감지기능을 개발하기 위하여 다중모드 GRIN(graded-Index) 광섬유의 휨에 의한 광섬유내의 광전파 특성변화를 고찰하였다. 다중모드 CRIN 광섬유의 data파는 기본(fundamental) 모드로, 침입 감시용 감시파는 높은 차수의 모드로 동시에 전파 되게 하고, 광섬유의 휨(bending)에 의한 데이타 유출시도는 높은 차수 모드의 감시파의 감쇠를 가져오고, 결국 수신측의 경보를 작동하도록 한다. 또한 일정한 곡률반경으로 감겨진 광섬유에 기본 모드만 선별적으로 주입된 경우에 있어서, 다중모드 GRIN 광섬유 내에서의 광파의 전파과정을 이론적으로 해석하고, 광섬유가 휘게 피는 경우 여러 모드 사이에 결합(coupling)이 생겨나게 되는데, 광섬유가 감겨진 곡률반경을 변경해가면서 결합되는 기본모드의 power 변화를 수치해석을 이용한 프로그램 시뮬레이션을 통하여 조사하였다. 이 연구결과는 광섬유의 휨에 의하여 방출되는 데이타 도청 및 침입자 감지에 다중모드 GRIN 광섬유 활용 가능성과 광섬유의 곡률반경이 1cm 정도가지는 Asawa-Taylor의 모델[4]이 정당함을 보였다.

Thin-bedded, Fine-grained Lacustrine Turbidite Facies on the Northern Coast of Jindo and the Adjacent Area: Density underflow-induced, Ash-rich Turbidity Current Deposits

  • Chang Tae Soo;Chun Seung Soo
    • 한국석유지질학회:학술대회논문집
    • /
    • 한국석유지질학회 1998년도 제5차 학술발표회 발표논문집
    • /
    • pp.29-37
    • /
    • 1998
  • The sedimentary succession on the northern coast of Jindo and the adjacent area comprises the thinly bedded, fine-grained deposits of an epiclastic sandstone, siltstone, black shale/mudstone, and cherty mudstone (ca. 200m in vertical thickness), which are interpreted as the finely stratified turbidites mainly by density underflow-induced currents. Most deposits can be divided into eight facies: thin-bedded, ash-rich massive sandstone layer (mS), graded and laminated mudstone layer (glM), graded mudstone layer with ripple lamination (rM), laminated and graded siltstone layer (lgZ), finely laminated black shale layer (IBS), structureless mudstone layer (mM), thin-bedded cherty mudstone layer (lCM), and contorted and laminated mudstone layer (dlM), The thin-bedded, ash-rich sandstone facies is interpreted to be deposited from high-density turbid underflows during a relatively large flooding. Most thinly bedded mudstone facies would be deposited from low-density turbid underflows (turbidity currents) with some different hydrodynamic condition and sediment concentration during the high discharge of river water. Whereas the structureless mudstone facies may result from raining down of suspended sediment intermittently supplied by overflows and interflows. From the entire succession, graded and laminated mudstone layers interbedded with thin-bedded, ash-rich massive sandstone are dominant in the lower part of the succession, and graded mudstone layers with ripple lamination ripple lamination occur mainly in the middle part of it. On the other hand, iaminated/raded siltstone and contorted/laminated mudstone layers prevail in the upper part. The transition of facies association is suggestive of the continuous change of main depositional setting from basin plain to lower slope, which could be due to the movement of depocenter by the increase of sediment supply (volcanic activity).

  • PDF

Thermal stresses and deflections of functionally graded sandwich plates using a new refined hyperbolic shear deformation theory

  • Bouchafa, Ali;Bouiadjra, Mohamed Bachir;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제18권6호
    • /
    • pp.1493-1515
    • /
    • 2015
  • A new refined hyperbolic shear deformation theory (RHSDT), which involves only four unknown functions as against five in case of other shear deformation theories, is presented for the thermoelastic bending analysis of functionally graded sandwich plates. Unlike any other theory, the number of unknown functions involved is only four, as against five in case of other shear deformation theories. The theory presented is variationally consistent, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. The sandwich plate faces are assumed to have isotropic, two-constituent material distribution through the thickness, and the modulus of elasticity, Poisson's ratio of the faces, and thermal expansion coefficients are assumed to vary according to a power law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic ceramic material. Several kinds of sandwich plates are used taking into account the symmetry of the plate and the thickness of each layer. The influences played by the transverse shear deformation, thermal load, plate aspect ratio and volume fraction distribution are studied. Numerical results for deflections and stresses of functionally graded metal-ceramic plates are investigated. It can be concluded that the proposed theory is accurate and simple in solving the thermoelastic bending behavior of functionally graded plates.