• Title/Summary/Keyword: governing parameter

Search Result 460, Processing Time 0.025 seconds

Interpretation Applied Dynamic Symmetry and Module for the Structure Analysis in Art-Work Space (해체적 작품공간의 구조 분석을 위한 다이내믹 시미트리와 모듈 개념의 적용 및 그 해석)

  • 신연호
    • Archives of design research
    • /
    • v.13 no.3
    • /
    • pp.221-234
    • /
    • 2000
  • This thesis aims to study the space concept of the constructive mode in the work space of the postmodernism artists since 1970s. According to the changing view of the world artists, they are searching for the characteristics of having the parameter of formative organization on how they are related to the constructive system which represents the work styles. First, this study searches for the theoretical approaches of the constructive system and parameters that were studied by Le Corbusier - the module concept as the meaning of order system being used for the basic formative construction Second, when it is regarded as a formative construction in making art as the'principles of organization'(the law of living form), which was defined by Suzanne Langer in the formative theory as the organized structure shown in growth structure in mu and ecological system, the principles governing the module rules were arthmetically analysed art-work space through the dynamic symmetry of Jay Hambidge. Therefore, this study shows the principles working on the parameters for new formative organization as follows: First, the module in the work space should be designed and built from the dynamic symmetry. Second, the module should satisfy the human needs that it must be acceptable, efficient, flexible, which are the necessary and sufficient condition for the dynamic symmetry. Third, the dynamic symmetry which has the principle of Reciprocity and the principle of Complement as its primary construction principle has the common properties and the reciprocity in the construction of the work space and when it has the self similarity, it segments organically the total space without damaging the continuum.

  • PDF

A Comprehensive Groundwater Modeling using Multicomponent Multiphase Theory: 1. Development of a Multidimensional Finite Element Model (다중 다상이론을 이용한 통합적 지하수 모델링: 1. 다차원 유한요소 모형의 개발)

  • Joon Hyun Kim
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.1
    • /
    • pp.89-102
    • /
    • 1996
  • An integrated model is presented to describe underground flow and mass transport, using a multicomponent multiphase approach. The comprehensive governing equation is derived considering mass and force balances of chemical species over four phases(water, oil, air, and soil) in a schematic elementary volume. Compact and systemati notations of relevant variables and equations are introduced to facilitate the inclusion of complex migration and transformation processes, and variable spatial dimensions. The resulting nonlinear system is solved by a multidimensional finite element code. The developed code with dynamic array allocation, is sufficiently flexible to work across a wide spectrum of computers, including an IBM ES 9000/900 vector facility, SP2 cluster machine, Unix workstations and PCs, for one-, two and three-dimensional problems. To reduce the computation time and storage requirements, the system equations are decoupled and solved using a banded global matrix solver, with the vector and parallel processing on the IBM 9000. To avoide the numerical oscillations of the nonlinear problems in the case of convective dominant transport, the techniques of upstream weighting, mass lumping, and elementary-wise parameter evaluation are applied. The instability and convergence criteria of the nonlinear problems are studied for the one-dimensional analogue of FEM and FDM. Modeling capacity is presented in the simulation of three dimensional composite multiphase TCE migration. Comprehesive simulation feature of the code is presented in a companion paper of this issue for the specific groundwater or flow and contamination problems.

  • PDF

Crack Spacing in RC Tension Members Considering Cover Thickness and Concrete Compressive Strength (피복두께와 콘크리트 강도를 고려한 철근콘크리트 인장부재의 균열간격)

  • Kim, Woo;Lee, Ki-Yeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.193-202
    • /
    • 2018
  • This paper proposed a crack spacing calculation formulation which is an important parameter for calculating the crack width, that is the main factor for verification of serviceability limit states and durability performance evaluation of reinforced concrete members. The basic equation of average crack spacing is derived by considering the bond characteristics which is the governing equation for the analysis of cracking behavior in reinforced concrete members. In order to consider the effect of the cover thickness and concrete compressive strength, the crack spacing measured in 124 direct tensile tests performed by several researchers was analyzed and each coefficient was proposed. And, correlation analysis was performed from 80 specimen data where the maximum and average crack spacing were simultaneously measured, and a correlation coefficient that can easily predict the maximum crack spacing from the average crack spacing was proposed. The results of the proposed average crack spacing equation and maximum crack spacing correlation were compared with those current design code specification. The comparisons of proposed equations and the Korean design codes show that the proposed formulation for the average crack spacing and the maximum crack spacing improves the accuracy and reliability of prediction compared to the corresponding provisions of the Korean Concrete Structural Design Code and Korean Highway Bridge Design Code (Limit States Design).

3-D Free Vibration Analysis of Exponential and Power-law Functionally Graded Material(FGM) Plates (지수 및 멱 법칙 점진기능재료 판의 3차원 자유진동해석)

  • Lee, Won-Hong;Han, Sung-Cheon;Ahn, Jin-Hee;Park, Weon-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.553-561
    • /
    • 2015
  • The exponential and power law functionally graded material(FGM) theory is reformulated considering the refined shear and normal deformation theory. This theory has ability to capture the both normal deformation effect and exponential and power law function in terms of the volume fraction of the constituents for material properties through the plate thickness. Navier's method has been used to solve the governing equations for all edges simply supported plates on Pasternak elastic foundation. Numerical solutions of vibration analysis of FGM plates are presented using this theory to illustrate the effects of power law index and 3-D theory of exponential and power law function on natural frequency. The relations between 3-D and 2-D higher-order shear deformation theory are discussed by numerical results. Further, effects of (i) power law index, (ii) side-to-thickness ratio, and (iii) elastic foundation parameter on nondimensional natural frequency are studied. To validate the present solutions, the reference solutions are discussed.

Power Generation Cost Comparison of Nuclear and Coal Power Plants in Year 2001 under Future Korean Environmental Regulations -Sensitivity and Uncertainty Analysis- (미래의 한국의 환경규제여건에 따른 2001년도의 원자력과 석탄화력 발전단가비교 -민감도와 불확실도 분석-)

  • Lee, Byong-Whi;Oh, Sung-Ho
    • Nuclear Engineering and Technology
    • /
    • v.21 no.1
    • /
    • pp.18-31
    • /
    • 1989
  • To analyze the impact of air pollution control on electricity generation cost, a computer program was developed. POGEN calculates levelized discounted power generation cost including additional air pollution control cost for coal power plant. Pollution subprogram calculates total capital and variable costs using governing equations for flue gas control. The costs are used as additional input for levelized discounted power generation cost subprogram. Pollution output for Rue Gas Desulphurization direct cost was verified using published cost data of well experienced industrialized countries. The power generation costs for the year 2001 were estimated by POGEN for three different regulatory scenarios imposed on coal power plant, and by levelized discounted power generation cost subprogram for nuclear power. Because of uncertainty expected in input variables for future plants, sensitivity and uncertainty analysis were made to check the importance and uncertainty propagation of the input variables using Latin Hypercube Sampling and Multiple Least Square method. Most sensitive parameter for levelized discounted power generation cost is discount rate for both nuclear and coal. The control cost for flue gas alone reaches additional 9-11 mills/kWh with standard deviation less than 1.3 mills/kWh. This cost will be nearly 20% of power generation cost and 40% of one GW capacity coal power plant investment cost. With 90% confidence, the generation cost of nuclear power plant will be 32.6-51.9 mills/kWh, and for the coal power plant it will be 45.5-50.5 mills/kWh. Nuclear is favorable with 95% confidence under stringent future regulatory requirement in Korea.

  • PDF

Analysis of Long-Term Monitoring Data From the Geum River Estuary (금강 하구의 장기 관측 자료 분석)

  • JEONG YONC HOOW;KIM YEONC TAE;CHAE YOUN ZOO;RHEE CHOONC WOON;KO KYUNC RAN;KIM SOH YOUNG;JEONG JU YOUNG;YANG JAE SAM
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.3
    • /
    • pp.139-144
    • /
    • 2005
  • To investigate the long-term variation of water qualities, we have daily monitored physio-chemical characteristics of surface water in the Geum River estuary from June 1996 to April 2004. We found that the water qualities were determined by three dominant factors : 1. fluvial input from Geum River ($28.3\%$), 2. chemical processes such as nitrification and phosphate addition originated from sediment resuspension and domestic sew- age input ($18.6\%$), 3. biological processes such as nutrient consumption by primary producers ($13.5\%$). The factor 1 (fluvial input) effectively affected the water quality of the estuary particularly during the normal or low river discharge. The factor 2 (chemical processes) and the factor 3 (biological processes) showed distinct seasonal differences due to their relative strengths of biological activities. The factor 3 was a governing parameter during the period of spring algal bloom in 2004. For the spring period, an empirical equation derived from the multi-regression analyses showed that the in-situ chlorophyll-a distributions in the estuarine water were successfully simulated by the phosphate concentrations and N/P ratios. Therefore we suggest that phosphate functions as a limiting factor for the primary productivity in the Geum River estuary for the dry season, especially during spring.

Inference of the Probability Distribution of Phase Difference and the Path Duration of Ground Motion from Markov Envelope (Markov Envelope를 이용한 지진동의 위상차 확률분포와 전파지연시간의 추정)

  • Choi, Hang;Yoon, Byung-Ick
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.5
    • /
    • pp.191-202
    • /
    • 2022
  • Markov envelope as a theoretical solution of the parabolic wave equation with Markov approximation for the von Kármán type random medium is studied and approximated with the convolution of two probability density functions (pdf) of normal and gamma distributions considering the previous studies on the applications of Radiative Transfer Theory (RTT) and the analysis results of earthquake records. Through the approximation with gamma pdf, the constant shape parameter of 2 was determined regardless of the source distance ro. This finding means that the scattering process has the property of an inhomogeneous single-scattering Poisson process, unlike the previous studies, which resulted in a homogeneous multiple-scattering Poisson process. Approximated Markov envelope can be treated as the normalized mean square (MS) envelope for ground acceleration because of the flat source Fourier spectrum. Based on such characteristics, the path duration is estimated from the approximated MS envelope and compared to the empirical formula derived by Boore and Thompson. The results clearly show that the path duration increases proportionately to ro1/2-ro2, and the peak value of the RMS envelope is attenuated by exp (-0.0033ro), excluding the geometrical attenuation. The attenuation slope for ro≤100 km is quite similar to that of effective attenuation for shallow crustal earthquakes, and it may be difficult to distinguish the contribution of intrinsic attenuation from effective attenuation. Slowly varying dispersive delay, also called the medium effect, represented by regular pdf, governs the path duration for the source distance shorter than 100 km. Moreover, the diffraction term, also called the distance effect because of scattering, fully controls the path duration beyond the source distance of 300 km and has a steep gradient compared to the medium effect. Source distance 100-300 km is a transition range of the path duration governing effect from random medium to distance. This means that the scattering may not be the prime cause of peak attenuation and envelope broadening for the source distance of less than 200 km. Furthermore, it is also shown that normal distribution is appropriate for the probability distribution of phase difference, as asserted in the previous studies.

Acoustic-based estimation of fish stocks in Widas Reservoir, East Java, Indonesia

  • Siti Nurul Aida;Agus Djoko Utomo;Safran Makmur;Tuah Nanda M. Wulandari;Khoirul Fatah;Yosmaniar;Indra Suharman;Ulung Jantama Wisha
    • Fisheries and Aquatic Sciences
    • /
    • v.27 no.4
    • /
    • pp.240-255
    • /
    • 2024
  • Widas Reservoir is situated in an area of 570 ha in the Pajaran Village, Madiun Regency, East Java Province, Indonesia, playing an essential role in fisheries, with the average fish catch per year of about 283 tons/year. This study explores the standing stock, growth parameters, mortality, and exploitation rates of several dominant fishes in Widas Reservoir. This study was carried out from February to November 2019. Fish stocks were estimated using acoustic tools, fish catch records, and sizes collected by local enumerators. Fish length frequency sampling was conducted on several dominant fish species, such as Oreochromis niloticus, Barbonymus gonionotus, and Osteochilus vittatus. Based on the length-frequency data, estimating fish population dynamics, the fish population dynamics (infinitive length (L) and growth coefficient (K)) estimation was run in a time series using the Fish Sock Analysis Tool, II (FISAT II) program package. Moreover, the estimation of natural mortality parameters, the fishing mortality parameter, and the exploitation rate was also performed. The approximated overall fish stock in the Widas Reservoir was about 79,848 kg, which lowered with the increase in water depth. Of particular concern, in the surface layer at a depth between 1-5 m, the fish stock reached 58,813 kg, while in the deeper zone (> 15 m), the value significantly lowered by about 98%, reaching 1,219 kg. These results indicate an overfishing in the Widas Reservoir. The value of the exploitation rate (E) of B. gonionotus was 0.748, O. niloticus 0.8, and O. vittatus 0.7, respectively, proving the overfishing states occurred in the study area. Therefore, regulations governing the number of catches and the use of fishing gear are crucial in Widas Reservoir, particularly the use of lift and gill nets with a mesh size of less than 2 cm.

Removal of Benzene-Nonaqueous Phase liquid(NAPL) in Soil Tank by NAPL Swelling and Non-swelling alcohols (토양 탱크에서 흡수 알코올과 비흡수 알코올을 이용한 벤젠-비수용상액체 제거 연구)

  • Song, Chung-Hyun;Jeong, Seung-Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.3
    • /
    • pp.40-47
    • /
    • 2009
  • Coinjection of alcohol and air or alcohol flooding only were evaluated with 3-D soil tank for removal of nonaqueous phase liquid (NAPL) contaminant from soil. 70%-ethanol and 40%-isopropanol were used for non-NAPL-swelling alcohol and NAPL-swelling alcohol, respectively. 729 ml-benzene was placed in the 37 liter soil tank. Alcohols were respectively injected from the injection well placed near the bottom of the tank and mobilized free phase NAPL and aqueous phases were then recovered from the extraction well placed in the upper part of the soil tank. Approximately 50% of removed NAPLs were free-phase in all experiments. The results were completely different to the previous soil column experiment results and also implied that alcohol properties did not affect the NAPL removal efficiency in the 3-D soil tank experiment. Air was also co-injected with alcohol to evaluate co-injection effects on NAPL removal. Enhanced NAPL removal effect of co-injection of 70%-ethanol and air was also found even in the 3-D soil tank evaluation. However, co-injection effect of 40%-iso-propanol and air was less apparent. This study determined that the most important parameter governing alcohol flooding for NAPL removal would be extraction capacity to recover NAPL and aqueous phase flowing in the soil. More researches are required for improving recovery efficiency of extraction well in real soil contamination conditions.

Evaluation for Rock Cleavage Using Distribution of Microcrack Lengths (미세균열의 길이 분포를 이용한 결의 평가)

  • Park, Deok-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.165-180
    • /
    • 2015
  • Jurassic granite from Geochang was analysed with respect to the characteristics of the rock cleavage. The phases of distribution of microcracks were well evidenced from the enlarged photomicrographs(${\times}6.7$) of the thin section. In this study, the length - cumulative frequency diagrams were used for expressing the distribution characteristics of microcrack. The diagrams for the six directions were arranged in the magnitude of density(${\rho}$). These diagrams show an order of H2 < H1 < G2 < G1 < R2 < R1 from the related chart. Among six diagrams, the diagram for hardway 2(H2) occupies the lowermost region on the left. On the contrary, the diagram for rift 1(R1) occupies the uppermost region on the right. Curve patterns of the two diagrams change from uniform to exponential distribution type in accordance with the increased density. The overall distribution characteristics of the diagrams were well evidenced from the magnitude of the exponent(${\lambda}$) and length of line oa related to the exponential straight line. The magnitude of exponent governing the values of slope(${\theta}$) is inversely proportional to the values of microcrack parameters such as number(N), length(L) and density. On the contrary, length of line oa is directly proportional to the values of the above three parameters. Above microcrack parameters related to the order of arrangement of diagrams show an order of hardway(H1 + H2) < grain(G1 + G2) < rift(R1 + R2). The distribution characteristics of progressive variation are found among the six diagrams. The order of arrangement of the diagrams indicates a relative magnitude of the rock cleavage. Meanwhile, the parameters such as slope, exponent, density and length of line oa were arranged in an order of H2 < H1 < G2 < G1 < R2 < R1. The variation curves of a smooth quadratic function are shown from the related chart. From the correlation chart between density and the above parameters, a common regularity following power-law correlation function was derived. Finally, the analysis for the rock cleavage was conducted through the combination between the diagram and microcrack parameter. This type of combination contribute to the progressivity in evaluation for the rock cleavage.