• Title/Summary/Keyword: good compressive strength

Search Result 541, Processing Time 0.034 seconds

Prediction model of resistivity and compressive strength of waste LCD glass concrete

  • Wang, Chien-Chih
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.467-475
    • /
    • 2017
  • The purpose of this study is to establish a prediction model for the electrical resistivity ($E_r$) of self-consolidating concrete by using waste LCD (liquid crystal display) glass as part of the fine aggregate and then, to analyze the results obtained from a series of laboratory tests. A hyperbolic function is used to perform nonlinear multivariate regression analysis of the electrical resistivity prediction model, with parameters such as water-binder ratio (w/b), curing age (t) and waste glass content (G). Furthermore, the relationship of compressive strength and electrical resistivity of waste LCD glass concrete is also found by a logarithm function, while compressive strength is evaluated by the electrical resistivity of non-destructive testing (NDT). According to relative regression analysis, the electrical resistivity and compressive strength prediction models are developed, and the results show that a good agreement is obtained using the proposed prediction models. From the comparison between the predicted analysis values and test results, the MAPE value of electrical resistivity is 17.0-18.2% and less than 20%, the MAPE value of compressive strength evaluated by $E_r$ is 5.9-10.6% and nearly less than 10%. Therefore, the prediction models established in this study have good predictive ability for electrical resistivity and compressive strength of waste LCD glass concrete. However, further study is needed in regard to applying the proposed prediction models to other ranges of mixture parameters.

The Relationship between Splitting Tensile Strength and Compressive Strength of Fiber Reinforced Concretes

  • Choi, Yeol;Kang, Moon-Myung
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.155-161
    • /
    • 2003
  • This paper presents experimental and analytical results of glass fiber-reinforced concrete (GFRC) and polypropylene fiber-reinforced concrete (PERC) to investigate the relationship between tensile strength and compressive strength based on the split cylinder test (ASTM C496) and compressive strength test (ASTM C39). Experimental studies were performed on cylinder specimens having 150 mm in diameter an 300 mm in height with two different fiber contents (1.0 and 1.5% by volume fraction) at ages of 7, 28 and 90 days. A total of 90 cylinder specimens were tested including specimens made of the plain concrete. The experimental data have been used to obtain the relationship between tensile strength and compressive strength. A representative equation is proposed for the relationship between tensile strength and compressive strength of fiber-reinforced concrete (FRC) including glass and polypropylene fibers. There is a good agreement between the average experimental results and those calculated values from the proposed equation.

Prediction of Compressive Strength of Concretes Containing Silica Fume and Styrene-Butadiene Rubber (SBR) with a Mathematical Model

  • Shafieyzadeh, M.
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.4
    • /
    • pp.295-301
    • /
    • 2013
  • This paper deals with the interfacial effects of silica fume (SF) and styrene-butadiene rubber (SBR) on compressive strength of concrete. Analyzing the compressive strength results of 32 concrete mixes performed over two water-binder ratios (0.35, 0.45), four percentages replacement of SF (0, 5, 7.5, and 10 %) and four percentages of SBR (0, 5, 10, and 15 %) were investigated. The results of the experiments were showed that in 5 % of SBR, compressive strength rises slightly, but when the polymer/binder materials ratio increases, compressive strength of concrete decreases. A mathematical model based on Abrams' law has been proposed for evaluation strength of SF-SBR concretes. The proposed model provides the opportunity to predict the compressive strength based on time of curing in water (t), and water, SF and SBR to binder materials ratios that they are shown with (w/b), (s) and (p).This understanding model might serve as useful guides for commixture concrete admixtures containing of SF and SBR. The accuracy of the proposed model is investigated. Good agreements between them are observed.

Enhancing mechanical and durability properties of geopolymer concrete with mineral admixture

  • Jindal, Bharat Bhushan;Singhal, Dhirendra;Sharma, Sanjay;Parveen, Parveen
    • Computers and Concrete
    • /
    • v.21 no.3
    • /
    • pp.345-353
    • /
    • 2018
  • This paper approaches to improve the mechanical and durability properties of low calcium fly ash geopolymer concrete with the addition of Alccofine as a mineral admixture. The mechanical and durability performance of GPC was assessed by means of compressive strength, flexural strength, permeability, water absorption and permeable voids tests. The correlation between compressive strength and flexural strength, depth of water penetration and percentage permeable voids are also reported. Test results show that addition of Alccofine significantly improves the mechanical as well as permeation properties of low calcium fly ash geopolymer concrete. Very good correlations were noted between the depth of water penetration and compressive strength, percentage permeable voids and compressive strength as well as between compressive strength and flexural strength.

Application on the Prediction Model of the Compressive Strength of Concrete by Maturity Method (적산온도에 의한 콘크리트 압축강도 추정모델의 적용성 검토)

  • Khil, Bae-Su;Kwon, Young-Jin;Nam, Jae-Hyun;Kim, Moo-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.2
    • /
    • pp.177-183
    • /
    • 1999
  • The major object of this study is to investigate experimentally the experimental equation by the non-destructive testing methods of ultrasonic pulse velocity, rebound number, combined method of ultrasonic pulse velocity and rebound number, maturity which are applicable to the evaluation of compressive strength of concrete at early ages. Also test result of mix are statistically analyzed to infer the correlation coefficient between the maturity and the compressive strength of concrete. The results show good application of Logistic curve for estimating strength development under various curing temperature. The relation between ultrasonic pulse velocity, rebound number, combined method of ultrasonic pulse velocity and rebound number and compressive strength of concrete have low correlation coefficient, but maturity method show good correlation coefficient.

  • PDF

Effect of the Fineness of Fly Ash on the Compressive Strength (플라이애시 입도가 압축강도에 미치는 영향)

  • Cho, Young-Keun;Kim, Ho-Kyu;Kim, Young-Ahn
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.313-319
    • /
    • 2017
  • In general, various factors such as grain size, chemical composition, amorphous amount, amorphous Si and Al content of fly ash affect the reaction with cement. In this study, we investigate the effect of fly ash particle characteristics on compressive strength. The standard sand was pulverized to a particle size similar to that of fly ash and the compressive strength was measured by blending with the cement as in fly. Using the measured compressive strength results, strength enhancement by cement hydration reaction and strength enhancement by particle filling effect were confirmed. Strength increment by pozzolanic reaction of fly ash was calculated by using the compressive strength results of mortar substituted with standard powder. As a result of comparison between compressive strengths and the particle characteristics of fly ash, the blaine showed a weak correlation with the compressive strength and the PI(Pozzolanic Index) showed good correlation with the 10% penetration diameter(D10) and the 50% Respectively. Therefore, it is expected that PI will be a good means to evaluate the fly ash characteristics together with the chemical characteristics of fly ash.

Engineering Properties of Fiber Mixed Soil (섬유 혼합토의 공학적 특성)

  • 장병욱;박영곤
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.1
    • /
    • pp.116-124
    • /
    • 2002
  • Natural resources fur the construction materials such as good soil, sand, and coarse aggregates have been encountered to be short due to excessive use by human. Even though some soil has been found to be unsuitable for construction materials, soil with reinforcement can naturally be an answer to these alternatives. According to recently published papers on fiber mixed soil, fiber mixed with soil can improve shear strength, compressive strength and post-peak load strength retention. In this study, a series of tests were performed to clarify the characteristics of fiber mixed soil and to give basic data for design and construction and their engineering properties, that is, unconfined compressive strength, splitting tensile strength, shear strength, crack by drying, freeze-thaw, creep and Poisson\`s ratio, were investigated and analyzed. It has been shown that fiber mixed soil is one of good alternatives fur the civil and building construction materials.

Models for Relative Density and Compressive Strength of Open-Cell Ceramics with Hollow Struts (공동골격을 가진 개방셀 세라믹스의 상대밀도와 압축강도 모델)

  • 정한남;현상훈
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.11
    • /
    • pp.1139-1150
    • /
    • 1997
  • A model for predicting the relative density and the compressive strength of open-cell ceramics with three-dimensional network structure was proposed through the interpretation of their macrostructure and fracture mechanics. The equation predicting the relative density was derived under the assumption that the open-cell structure was a periodic array of the tetrakaidecahedron unit cell consisting of cylindrical struts containing the internal hollow with the shape of a triangular prism. The model for compressive strength of open-cell ceramics with the hollow strut was also developed by modifying conventional model which based on fracture behavior of them subjected to the compressive stress. Both the relative density and the compressive strength were expressed in terms of the ratio of the strut diameter to the length together with the ratio of the hollow size to the strut diameter. The proposed model for the relative density and the compressive strength of the alumina-zirconia composite with open-cell structure were accorded well with the experimental values, whereas Gibson-Ashby and Zhang's model did not show such a good agreement.

  • PDF

Relationship between Compressive Strength of Geo-polymers and Pre-curing Conditions

  • Kim, Hyunjung;Kim, Yooteak
    • Applied Microscopy
    • /
    • v.43 no.4
    • /
    • pp.155-163
    • /
    • 2013
  • Meta-kaolin (MK) and blast furnace slag (BS) were used as raw materials with NaOH and sodium silicate as alkali activators for making geo-polymers. The compressive strength with respect to the various pre-curing conditions was investigated. In order to improve the recycling rate of BS while still obtaining high compressive strength of the geo-polymers, it was necessary to provide additional CaO to the MK by adding BS. The specimens containing greater amounts of BS can be applied to fields that require high initial compressive strength. Alkali activator(s) are inevitably required to make geo-polymers useful. High temperature pre-curing plays an important role in improving compressive strength in geo-polymers at the early stage of curing. On the other hand, long-term curing produced little to no positive effects and may have even worsened the compressive strength of the geo-polymers because of micro-structural defects through volume expansion by high temperature pre-curing. Therefore, a pre-curing process at a medium range temperature of $50^{\circ}C$ is recommended because a continuous increase in compressive strength during the entire curing period as well as good compressive strength at the early stages can be obtained.

Prediction of Compressive Strength of Fly Ash Concrete by a New Apparent Activation Energy Function (새로운 겉보기 활성에너지 함수에 의한 플라이애시 콘크리트의 압축강도 예측)

  • 한상훈;김진근;박연동
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.947-952
    • /
    • 2001
  • The prediction model is proposed to estimate the variation of compressive strength of fly ash concrete with aging. After analyzing the experimental result with the model, the regression results are presented according to fly ash replacement content and water/cement ratio. Based on the regression results, the influence of fly ash replacement content and water/cement ratio on apparent activation energy was investigated. According to the analysis, the model provides a good estimate of compressive strength development of fly ash concrete with aging. As the fly ash replacement content increases, the limiting relative compressive strength and initial apparent activation energy become greater. The concrete with water/cement ratio smaller than 0.40 shows that the limiting relative compressive strength and apparent activation energy are nearly constant according to water/cement ratio. But, the concrete with water/cement ratio greater than 0.40 has the increasing limiting relative compressive strength and apparent activation energy with increasing water/cement ratio.

  • PDF