• Title/Summary/Keyword: gold electron-beam resist

Search Result 2, Processing Time 0.016 seconds

Novel Patterning of Gold Using Spin-Coatable Gold Electron-Beam Resist

  • Kim, Ki-Chul;Lee, Im-Bok;Kang, Dae-Joon;Maeng, Sung-Lyul
    • ETRI Journal
    • /
    • v.29 no.6
    • /
    • pp.814-816
    • /
    • 2007
  • Conventional lithography methods of gold patterning are based on deposition and lift-off or deposition and etching. In this letter, we demonstrate a novel method of gold patterning using spin-coatable gold electron-beam resist which is functionalized gold nanocrystals with amine ligands. Amine-stabilized gold electron beam resist exhibits good sensitivity, 3.0 mC/$cm^2$, compared to that of thiol-stabilized gold electron beam resists. The proposed method reduces the number of processing steps and provides greater freedom in the patterning of complex nanostructures.

  • PDF

One- and Two-Dimensional Arrangement of DNA-Templated Gold Nanoparticle Chains using Plasma Ashing Method

  • Kim, Hyung-Jin;Hong, Byung-You
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.291-291
    • /
    • 2010
  • Electron-beam lithography (EBL) process is a versatile tool for a fabrication of nanostructures, nano-gap electrodes or molecular arrays and its application to nano-device. However, it is not appropriate for the fabrication of sub-5 nm features and high-aspect-ratio nanostructures due to the limitation of EBL resolution. In this study, the precision assembly and alignment of DNA molecule was demonstrated using sub-5 nm nanostructures formed by a combination of conventional electron-beam lithography (EBL) and plasma ashing processes. The ma-N2401 (EBL-negative tone resist) nanostructures were patterned by EBL process at a dose of $200\;{\mu}C/cm2$ with 25 kV and then were ashed by a chemical dry etcher at microwave (${\mu}W$) power of 50 W. We confirmed that this method was useful for sub-5 nm patterning of high-aspect-ratio nanostructures. In addition, we also utilized the surface-patterning technique to create the molecular pattern comprised 3-(aminopropyl) triethoxysilane (APS) as adhesion layer and octadecyltrichlorosilane (OTS) as passivation layer. DNA-templated gold nanoparticle chain was attached only on the sub-5 nm APS region defined by the amine groups, but not on surface of the OTS region. We were able to obtain DNA molecules aligned selectively on a SiO2/Si substrate using atomic force microscopy (AFM).

  • PDF