• Title/Summary/Keyword: goal structures

Search Result 437, Processing Time 0.027 seconds

Buckling capacity of uniformly corroded steel members in terms of exposure time

  • Rahgozar, Reza;Sharifi, Yasser;Malekinejad, Mohsen
    • Steel and Composite Structures
    • /
    • v.10 no.6
    • /
    • pp.475-487
    • /
    • 2010
  • Most of steel structures in various industries are subjected to corrosion due to environmental exposure. Corrosion damage is a serious problem for these structures which may reduce their carrying capacity. These aging structures require maintenance and in many cases, replacement. The goal of this research is to consider the effects of corrosion by developing a model that estimates corrosion loss as a function of exposure time. The model is formulated based on average measured thickness data collected from three severely corroded I-beams (nearly 30 years old). Since corrosion is a time-dependent parameter. Analyses were performed to calculate the lateral buckling capacity of steel beam in terms of exposure time. Minimum curves have been developed for assessment of the remaining lateral buckling capacity of ordinary I-beams based on the loss of thicknesses in terms of exposure time. These minimum curves can be used by practicing engineers for better estimates on the service life of corrosion damaged steel beams.

Investigation of Users' Goals in Social Network Sites (소셜네트워크사이트 사용자의 가치체계 연구)

  • Jung, Yoonhyuk
    • The Journal of Information Systems
    • /
    • v.23 no.1
    • /
    • pp.93-109
    • /
    • 2014
  • This study aims to develop a rich understanding of user goals in user-empowering information technologies which have been dominating part in the information systems environment. A particular focus is on users' goals in a social network site (SNS) which is a typical example of user-empowering technologies. Users conduct various activities in order to achieve diverse goals in SNS. Thus, investigating what goals users pursue in SNS will give insights into understanding the users. We employed the laddering interview technique and means-end chain approach. Interviews of 50 Facebook users were analyzed to produce a hierarchical goal map showing users' goal structure. The map contains 18 goals, including self-reflection, psychological stability, belongingness, improving productivity, and amusement as ultimate goals in SNS. In the map, there are varied routes from activities to ultimate goals in SNS; that is, a complex assembly consisting of activities and goals. The findings call the information systems research community to have more interests in diverse goals and values users seek with technologies.

Impact of target spectra variance of selected ground motions on seismic response of structures

  • Xu, Liuyun;Zhou, Zhiguang
    • Earthquakes and Structures
    • /
    • v.23 no.2
    • /
    • pp.115-128
    • /
    • 2022
  • One common method to select input ground motions to predict dynamic behavior of structures subjected to seismic excitation requires spectral acceleration (Sa) match target mean response spectrum. However, dispersion of ground motions, which explicitly affects the structural response, is rarely discussed in this method. Generally, selecting ground motions matching target mean and variance has been utilized as an appropriate method to predict reliable seismic response. The goal of this paper is to investigate the impact of target spectra variance of ground motions on structural seismic response. Two sets of ground motions with different target variances (zero variance and minimum variance larger than inherent variance of the target spectrum) are selected as input to two different structures. Structural responses at different heights are compared, in terms of peak, mean and dispersion. Results show that increase of target spectra variance tends to increase peak floor acceleration, peak deformation and dispersions of response of interest remarkably. To short-period structures, dispersion increase ratios of seismic response are close to that of Sa of input ground motions at the first period. To long-period structures, dispersions of floor acceleration and floor response spectra increase more significantly at the bottom, while dispersion increase ratios of IDR and deformation are close to that of Sa of input ground motions at the first period. This study could further provide useful information on selecting appropriate ground motion to predict seismic behavior of different types of structures.

Combinatorial continuous non-stationary critical excitation in M.D.O.F structures using multi-peak envelope functions

  • Ghasemi, S. Hooman;Ashtari, P.
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.895-908
    • /
    • 2014
  • The main objective of critical excitation methods is to reveal the worst possible response of structures. This goal is accomplished by considering the uncertainties of ground motion, which is subjected to the appropriate constraints, such as earthquake power and intensity limit. The concentration of this current study is on the theoretical optimization aspect, as is the case with the majority of conventional critical excitation methods. However, these previous studies on critical excitation lead to a discontinuous power spectral density (PSD). This paper introduces some critical excitations which contain proper continuity in frequency domain. The main idea for generating such continuous excitations stems from the combination of two continuous functions. On the other hand, in order to provide a non-stationary model, this paper attempts to present an appropriate envelope function, which unlike the previous envelope functions, can properly cover the natural earthquakes' accelerograms based on multi-peak conditions. Finally, the proposed method is developed into the multiple-degree-of-freedom (M.D.O.F) structures.

A Study of proposal for Waterproofing technology proper to the underground Concrete Structure (국내 지하구조물에 적용 가능한 방수 기술 제안 연구)

  • Seon, Yun-Suk;Kim, Jin-Sung;Park, Jin-Sang;Kwon, Shi-Won;Oh, Sang-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.409-412
    • /
    • 2006
  • The goal of waterproofing materials and construction method used for underground structure can be attained only when construction is done perfectly free of laitance, moisture and foreign substances on concrete surface. However, construction engineers agree that it is difficult to perfectly carry out such work in practice and realization of perfect waterproofing for underground structures is impossible in reality. Therefore, this study is to examine and explore waterproofing materials and construction method completely meeting environmental impacts that underground structures receive and thereby suggest waterproofing technology applicable to underground structures, in order to prevent problems caused by leakage for underground structures.

  • PDF

An analytical approach for offshore structures considering soil-structure interaction

  • Ali Sari;Kasim Korkmaz
    • Advances in Computational Design
    • /
    • v.9 no.1
    • /
    • pp.25-38
    • /
    • 2024
  • This paper presents an advanced analytical approach for the design and analysis of fixed offshore structures with soil structure interaction considered. The proposed methodology involves conducting case studies to illustrate and assess the structural response of a structure considering seven different earthquakes, with the primary goal of ensuring there is no global collapse in the structures. The case studies focus on developing a model for structural analysis and its topside, incorporating nonlinear axial and lateral springs to capture soil-pile interaction. Additionally, mass and damping ratios are considered through the use of dashpots in the analyses. Finite Element Software was employed for structural analyses with detailed modeling, with soil spring nodes applied in the entire structure across various depths. After the finite element analysis was carried out, a sensitivity analysis was conducted to quantify and report the effects of different parameters.

Seismic performance of the historical masonry clock tower and influence of the adjacent walls

  • Cakir, Ferit;Uysal, Habib
    • Earthquakes and Structures
    • /
    • v.7 no.2
    • /
    • pp.217-231
    • /
    • 2014
  • Ancient masonry towers are regarded as among the most important historical heritage structures of the world. These slender structures typically have orthogonal and circular geometry in plane. These structural forms are commonly installed with adjacent structures. Because of their geometrical shapes and structural constraints, ancient masonry towers are more vulnerable to earthquake damage. The main goal of the paper is to investigate the seismic behavior of Erzurum Clock Tower under earthquake loading and to determine the contribution of the castle walls to the seismic performance of the tower. In this study, four three-dimensional finite element models of the Erzurum Clock Tower were developed and the seismic responses of the models were investigated. Time history analyses were performed using the earthquakes that took place in Turkey in 1983 near Erzurum and in 1992 near Erzincan. In the first model, the clock tower was modeled without the adjacent walls; in the second model, the clock tower was modeled with a castle wall on the south side; in the third model, the clock tower was modeled with a castle wall on the north side; and in the last model, the clock tower was modeled with two castle walls on both the north and south sides. Results of the analyses show that the adjacent walls do not allow lateral movements and the horizontal displacements decreases. It is concluded that the adjacent structures should be taken into consideration when modeling seismic performance in order to get accurate and realistic results.

Safety Estimation of High Pressure Drop Control Valve for Offshore Structures (해양플랜트용 고압.고차압 제어밸브의 구조 안전성 평가)

  • Kim, Jae-Woong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.553-558
    • /
    • 2011
  • This study have goal with conceptual design for offshore structures of high pressure drop control valve for localization valve for development accomplished with flow analysis based on provision of ANSI B16.34, ANSI B16.10, ANSI B16.25. In order to localize the Offshore structures high pressure drop control valve. This study is numerical analysis for zambil offshore project of high pressure drop control valve. The solver which ANSYS workbench used for offshore structures analysis. The working fluids assumed the glycerin(C3H8O3). The structural analysis used ANSYS which is a commercial code. Stress analysis result of internal pressure in valve showed lower than yield strength. This is expect to need more detail design and verification for stem and disk structure. In this study a multi-disk of high pressure drop control valve is designed and manufactured. Then, the flow rate and high pressure dorp of fluids flowing in the high pressure drop control valve is CAE. So, this system can be easily substituted for the existing zambil offshore project system. Finally, safety estimation for trim design of high pressure drop control valve for offshore structures.

Practical fatigue/cost assessment of steel overhead sign support structures subjected to wind load

  • van de Lindt, John W.;Ahlborn, Theresa M.
    • Wind and Structures
    • /
    • v.8 no.5
    • /
    • pp.343-356
    • /
    • 2005
  • Overhead sign support structures number in the tens of thousands throughout the trunk-line roadways in the United States. A recent two-phase study sponsored by the National Cooperative Highway Research Program resulted in the most significant changes to the AASHTO design specifications for sign support structures to date. The driving factor for these substantial changes was fatigue related cracks and some recent failures. This paper presents the method and results of a subsequent study sponsored by the Michigan Department of Transportation (MDOT) to develop a relative performance-based procedure to rank overhead sign support structures around the United States based on a linear combination of their expected fatigue life and an approximate measure of cost. This was accomplished by coupling a random vibrations approach with six degree-of-freedom linear dynamic models for fatigue life estimation. Approximate cost was modeled as the product of the steel weight and a constructability factor. An objective function was developed and used to rank selected steel sign support structures from around the country with the goal of maximizing the objective function. Although a purely relative approach, the ranking procedure was found to be efficient and provided the decision support necessary to MDOT.