• 제목/요약/키워드: glycosidase

검색결과 103건 처리시간 0.023초

복숭아 과실의 발육 중 세포벽성분 및 Glycosidase 활성의 변화 (Changes in the Cell Wall Components and Glycosidases Activity during Development of Peach Fruits)

  • 장경호;김대현;변재균
    • 한국식품저장유통학회지
    • /
    • 제8권1호
    • /
    • pp.66-73
    • /
    • 2001
  • 본 연구에서는 복숭아 '미백도', '대구보' 및 '유명' 과실의 발육단계별로 과실의 경도, 세포벽성분 및 g1ycisidase 활성의 변화를 조사함으로써 수확후의 저장중 과실에서와 같이 발육중인 과실의 연화에서 도 $\beta$-galactosidase가 중요한 역할을 하는지 알고자 하였다. 조사시기는 5월 13일, 6월 16일, 7월 16일, 8월 5일이었으며, 수확기가 늦은 '유명'은 8월 28일에 한번 더 조사하였다. Total sugar와 비섬유성 중성당의 함량은 각 품종의 세포벽물질을 증류수, 0.05M CDTA 0.05M $Na_2$CO$_3$, 4% KOH, 2.4% KOH로 차례로 분획하여 조사하였다. 과실의 발육에 따라 경도는 세 품종 모두에서 감소하였으며, '유명' 과실의 경도는 모든 발육단계에서 '미백도'와 '대구보'보다 높았다. 발육단계에 따른 각 분획별 total sugar의 함량 변화는 품종간에 뚜렷한 차이가 없었다. 세 품종의 세포벽 물질과 각 분획중의 주요 중성당은 arabinose와 galactose였다. '미백도'와 '대구보'의 수확일인 8월 5일의 증류수 가용성 분획의 rhamnose의 mol % 변화는 품종별 경도 변화와 상관관계가 있었다. 가용성 $\beta$-galactosidase의 활성은 세 품종 모두에서 파실 발육초기에는 높았으나 초기 이후에는 매우 낮은 수준이었다. 세포벽결합형 $\beta$-galactosidase는 세 품종 모두에서 발육초기에 높았던 활성이 수확기가지 계속적으로 감소하였다. 다른 glycosidase의 활성들도 품종간에 뚜렷한 차이를 보이지는 않았다.

  • PDF

Asymmetric Total Synthesis of the Glycosidase Inhibitor, 1,4-dideoxy-l,4-imino-D-arabinitol(DAB1)

  • Kim, In-Su;Hoon, Jung-Young
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2003년도 Annual Meeting of KSAP : International Symposium on Pharmaceutical and Biomedical Sciences on Obesity
    • /
    • pp.115-115
    • /
    • 2003
  • Naturally occurring sugar mimics with a nitrogen in the ring are classified into five structural classes: polyhydroxylated pyrrolidines, piperidines, indolizidines. pyrrolizidine, and nortropanes. Glycosidase are involved in a wide range of important biological processes, such as intestinal digestion, post-translational processing of glycoproteins and the lysosomal catabolism of glycoconjugate. The realization that alkaloidal sugar mimics might have enormous therapeutic potential in many diseases such as viral infection, cancer and diabetes has led to increasing interest and demand for these compounds. Most of these effects can be shown to result from the direct or indrect inhibition of glycosidases.

  • PDF

Complete Biotransformation of Protopanaxatriol-Type Ginsenosides in Panax ginseng Leaf Extract to Aglycon Protopanaxatriol by β-Glycosidases from Dictyoglomus turgidum and Pyrococcus furiosus

  • Yang, Eun-Joo;Shin, Kyung-Chul;Lee, Dae Young;Oh, Deok-Kun
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권2호
    • /
    • pp.255-261
    • /
    • 2018
  • Aglycon protopanaxatriol (APPT) has valuable pharmacological effects such as memory enhancement and tumor inhibition. ${\beta}$-Glycosidase from the hyperthermophilic bacterium Dictyoglomus turgidum (DT-bgl) hydrolyzes the glucose residues linked to APPT, but not other glycoside residues. ${\beta}$-Glycosidase from the hyperthermophilic bacterium Pyrococcus furiosus (PF-bgl) hydrolyzes the outer sugar at C-6 but not the inner glucose at C-6 or the glucose at C-20. Thus, the combined use of DT-bgl and PF-bgl is expected to increase the biotransformation of PPT-type ginsenosides to APPT. We optimized the ratio of PF-bgl to DT-bgl, the concentrations of substrate and enzyme, and the reaction time to increase the biotransformation of ginsenoside Re and PPT-type ginsenosides in Panax ginseng leaf extract to APPT. DT-bgl combined with PF-bgl converted 1.0 mg/ml PPT-type ginsenosides in ginseng leaf extract to 0.58 mg/ml APPT without other ginsenosides, with a molar conversion of 100%. We achieved the complete biotransformation of ginsenoside Re and PPT-type ginsenosides in ginseng leaf extract to APPT by the combined use of two ${\beta}$-glycosidases, suggesting that discarded ginseng leaves can be used as a source of the valuable ginsenoside APPT. To the best of our knowledge, this is the first quantitative production of APPT using ginsenoside Re, and we report the highest concentration and productivity of APPT from ginseng extract to date.

Enzymatic Synthesis of β-Glucosylglycerol and Its Unnatural Glycosides Via β-Glycosidase and Amylosucrase

  • Jung, Dong-Hyun;Seo, Dong-Ho;Park, Ji-Hae;Kim, Myo-Jung;Baek, Nam-In;Park, Cheon-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권4호
    • /
    • pp.562-570
    • /
    • 2019
  • ${\beta}$-Glucosylglycerol (${\beta}-GG$) and their derivatives have potential applications in food, cosmetics and the healthcare industry, including antitumor medications. In this study, ${\beta}-GG$ and its unnatural glycosides were synthesized through the transglycosylation of two enzymes, Sulfolobus shibatae ${\beta}$-glycosidase (SSG) and Deinococcus geothermalis amylosucrase (DGAS). SSG catalyzed a transglycosylation reaction with glycerol as an acceptor and cellobiose as a donor to produce 56% of ${\beta}-GGs$ [${\beta}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}1/3$)-$\text\tiny{D}$-glycerol and ${\beta}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}2$)-$\text\tiny{D}$-glycerol]. In the second transglycosylation reaction, ${\beta}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}1/3$)-$\text\tiny{D}$-glycerol was used as acceptor molecules of the DGAS reaction. As a result, 61% of ${\alpha}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}4$)-${\beta}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}1/3$)-$\text\tiny{D}$-glycerol and 28% of ${\alpha}$-$\text\tiny{D}$-maltopyranosyl-($1{\rightarrow}4$)-${\beta}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}1/3$)-$\text\tiny{D}$-glycerol were synthesized as unnatural glucosylglycerols. In conclusion, the combined enzymatic synthesis of the unnatural glycosides of ${\beta}-GG$ was established. The synthesis of these unnatural glycosides may provide an opportunity to discover new applications in the biotechnological industry.

Icaritin Preparation from Icariin by a Special Epimedium Flavonoid-Glycosidase from Aspergillus sp.y848 Strain

  • Wang, Zhenghao;Liu, Chunying;Yu, Hongshan;Wu, Bo;Huai, Baoyu;Zhuang, Ziyu;Sun, Changkai;Xu, Longquan;Jin, Fengxie
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권4호
    • /
    • pp.437-446
    • /
    • 2022
  • In this study, to obtain icaritin with high pharmacological activities from icariin, which has a content ratio of over 58% in the total flavonoids of Epimedium herb, a special Epimedium flavonoid-glycosidase was produced, purified and characterized from Aspergillus sp.y848 strain. The optimal enzyme production was gained in a medium containing 5% (w/v) wheat bran extract and 0.7% (w/v) Epimedium leaf powder as the enzyme inducer, and strain culture at 30℃ for 6-7 days. The molecular weight of the enzyme was approximately 73.2 kDa; the optimal pH and temperature were 5.0 and 40℃. The enzyme Km and Vmax values for icariin were 15.63 mM and 55.56 mM/h. Moreover, the enzyme hydrolyzed the 7-O-glucosides of icariin into icariside II, and finally hydrolyzed 3-Orhamnoside of icariside II into icaritin. The enzyme also hydrolyzed 7-O-glucosides of epimedin B to sagittatoside B, and then further hydrolyzed terminal 3-O-xyloside of sagittatoside B to icarisiede II, before finally hydrolyzing 3-O-rhamnoside of icarisiede II into icaritin. The enzyme only hydrolyzed 7-O-glucoside of epimedin A or epimedin C into sagittatoside A or sagittatoside C. It is possible to prepare icaritin from the high-content icariin in Epimedium herb using this enzyme. When 2.5% icariin was reacted at 40℃ for 18-20 h by the low-cost crude enzyme, 5.04 g icaritin with 98% purity was obtained from 10 g icariin. Also, the icaritin molar yield was 92.5%. Our results showed icaritin was successfully produced via cost-effective and relatively simple methods from icariin by crude enzyme. Our results should be very useful for the development of medicines from Epimedium herb.

Journal of Ginseng ResearchHighly regioselective biotransformation of ginsenoside Rb2 into compound Y and compound K by β-glycosidase purified from Armillaria mellea mycelia

  • Kim, Min-Ji;Upadhyaya, Jitendra;Yoon, Min-Sun;Ryu, Nam Soo;Song, Young Eun;Park, Hee-Won;Kim, Young-Hoi;Kim, Myung-Kon
    • Journal of Ginseng Research
    • /
    • 제42권4호
    • /
    • pp.504-511
    • /
    • 2018
  • Background: The biological activities of ginseng saponins (ginsenosides) are associated with type, number, and position of sugar moieties linked to aglycone skeletons. Deglycosylated minor ginsenosides are known to be more biologically active than major ginsenosides. Accordingly, the deglycosylation of major ginsenosides can provide the multibioactive effects of ginsenosides. The purpose of this study was to transform ginsenoside Rb2, one of the protopanaxadiol-type major ginsenosides, into minor ginsenosides using ${\beta}$-glycosidase (BG-1) purified from Armillaria mellea mycelium. Methods: Ginsenoside Rb2 was hydrolyzed by using BG-1; the hydrolytic properties of Rb2 by BG-1 were also characterized. In addition, the influence of reaction conditions such as reaction time, pH, and temperature, and transformation pathways of Rb2, Rd, F2, compound O (C-O), and C-Y by treatment with BG-1 were investigated. Results: BG-1 first hydrolyzes 3-O-outer ${\beta}$-$\text\tiny{D}$-glucoside of Rb2, then 3-O-${\beta}$-$\text\tiny{D}$-glucoside of C-O into C-Y. C-Y was gradually converted into C-K with a prolonged reaction time, but the pathway of Rb2 ${\rightarrow}$ Rd ${\rightarrow}$ F2 ${\rightarrow}$ C-K was not observed. The optimum reaction conditions for C-Y and C-K formation from Rb2 by BG-1 were pH 4.0-4.5, temperature $45-60^{\circ}C$, and reaction time 72-96 h. Conclusion: ${\beta}$-Glycosidase purified from A. mellea mycelium can be efficiently used to transform Rb2 into C-Y and C-K. To our best knowledge, this is the first result of transformation from Rb2 into C-Y and C-K by basidiomycete mushroom enzyme.