• Title/Summary/Keyword: glycolysis

Search Result 243, Processing Time 0.018 seconds

Physiological Changes of Saccharomyces cerevisiae KNU5377 Occurred in the Process of the 48-hour Ethanol Fermentation at 40℃ (40℃ 48시간 에탄올발효 과정 중 일어나는 Saccharomyces cerevisiae KNU5377의 생리 변화)

  • Kwak, Sun-Hye;Kim, Il-Sup;Kang, Kyung-Hee;Lee, Jung-Sook;Jin, Ingn-Yol
    • Journal of Life Science
    • /
    • v.21 no.1
    • /
    • pp.146-154
    • /
    • 2011
  • In this study, physiological changes in a thermotolerant yeast Saccharomyces cerevisiae KNU5377 cell exposed to 48-hour alcohol fermentation at $40^{\circ}C$ were investigated. After 12 hours of alcohol fermentation at $40^{\circ}C$, the $C_{16:1}$ unsaturated acid of plasma membrane increased to 1.5 times more than the $C_{16:0}$ saturated fatty acid, and to about 2 times more for the $C_{18:1}$ unsaturated fatty acid. Fermentation at both $30^{\circ}C$ and $37^{\circ}C$ fermentation showed the same pattern as that done at $40^{\circ}C$. The pH of the alcohol-fermentation medium was reduced to pH 4.1 from a starting pH of 6.0 through the 12-hr fermentation and then maintained this level during the continuing fermentation. With the process of fermentation, the remaining glucose was reduced, but its amount remaining during the $40^{\circ}C$-fermentation was less reduced than those fermented at $30^{\circ}C$ and $37^{\circ}C$. In the study investigating the changing pattern of cellular proteins in the alcohol-fermenting cells, the SDS-PAGE and 2-D data indicated the most expressed dot was phosphoglycerate kinase, which is one enzyme involved in glycolysis. Why this enzyme was most expressed in the cells exposed to unfavorable conditions such as high temperature, increasing concentration of produced alcohol and long time exposure to other stress factors remains unsolved.

Frequency of Meals and Hyperlipogenesis of Rat (쥐의 급식회수(給食回數)와 체지방과잉합성(體脂肪過剩合成))

  • Han, In-K.
    • Applied Biological Chemistry
    • /
    • v.7
    • /
    • pp.21-27
    • /
    • 1966
  • This experiment was performed to investigate the effect of the frequency of meals on the metatolism and the body composition of rats when equal amount of purified diet was ingested. Thirty approximately days old rats weighing 290 g and thirty-two about 40 days old rats weighing 180 g were employed for the period of 34 days. Rats fed ad libitum (10 to 15 meals per day) and two-meal per day were pair-fed and equal amount of diet was fed to each rat in pair. The experimental results obtained are summarized as follows: 1. Frequency of meal did not exert any effect on the body weight gain. However, rats fed two-meal per· day gained significantly (p <0.005) more fat and energy than ad libitum group. The rate of gain of protein in ad libitum group was higher than that of two-meal group. No difference was observed for the mineral deposition of rat body. 2. From the preperation of rat liver it was found that the activity of glucose-6-phosphate dehydrogenase was much higher for the rats fed two-meals per day than those fed ad libitum. Therefore, it is suggested that the metabolic pathway of carbohydrate for two-meal group has been shifted from glycolysis to Hexose Monophosphate Shunt and produced more NADPH which would be the essential cofactor of fatty acids synthesis. 3. The rate of excretion of urinary nitrogen for two-meal group was significantly (p<0.005) higher than that of ad libitum group. It is apparent that considerable amount of over-loaded amino acids by feeding two-big-meal daily· could not be used for the protein biosynthesis all at once and excreted following deamination through urine. The residual carbon chain could be served as a precursor of fatty acids synthesis. 4. The heat production rate of rats fed two-meal group was significantly (p<0.005) lower than that of ad libitum group. It seems possible that the activity of thyroid gland (and consequently BMR) can be depressed by the frequency of meal.

  • PDF

High-mobility Group Box 1 Induces the Epithelial-mesenchymal Transition, Glycolytic Switch, and Mitochondrial Repression via Snail Activation (HMGB1/Snail cascade에 의한 epithelial-mesenchymal transition 및 glycolytic switch, mitochondrial repression 유도)

  • Lee, Su Yeon;Ju, Min Kyung;Jeon, Hyun Min;Kim, Cho Hee;Park, Hye Gyeong;Kang, Ho Sung
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1179-1191
    • /
    • 2019
  • Cancer cells undergo the epithelial-mesenchymal transition (EMT) and show unique oncogenic metabolic phenotypes such as the glycolytic switch (Warburg effect) which are important for tumor development and progression. The EMT is a critical process for tumor invasion and metastasis. High-mobility group box 1 (HMGB1) is a chromatin-associated nuclear protein, but it acts as a damage-associated molecular pattern molecule when released from dying cells and immune cells. HMGB1 induces the EMT, as well as invasion and metastasis, thereby contributing to tumor progression. Here, we show that HMGB1 induced the EMT by activating Snail. In addition, the HMGB1/Snail cascade was found induce a glycolytic switch. HMGB1 also suppressed mitochondrial respiration and cytochrome c oxidase (COX) activity by a Snail-dependent reduction in the expression of the COX subunits COXVIIa and COXVIIc. HMGB1 also upregulated the expression of several key glycolytic enzymes, including hexokinase 2 (HK2), phosphofructokinase-2/fructose-2,6-bisphosphatase 2 (PFKFB2), and phosphoglycerate mutase 1 (PGAM1), in a Snail-dependent manner. However, HMGB1 was found to regulate some other glycolytic enzymes including lactate dehydrogenases A and B (LDHA and LDHB), glucose transporter 1 (GLUT1), and monocarboxylate transporters 1 and 4 (MCT1 and 4) in a Snail-independent manner. Transfection with short hairpin RNAs against HK2, PFKFB2, and PGAM1 prevented the HMGB1-induced EMT, indicating that glycolysis is associated with HMGB1-induced EMT. These findings demonstrate that HMGB1 signaling induces the EMT, glycolytic switch, and mitochondrial repression via Snail activation.