In this study, methotrexate (MTX)-encapsulated polymeric micelles using methoxy poly(ethylene glycol) (MPEG)-grafted chitosan (ChitoPEG) copolymer were prepared. The MIX-incorporated polymeric micelles of ChitoPEG copolymer has a particle size of around 50-100 nm. In 1H nuclear magnetic resonance (NMR) study, the specific peaks of MTX disappeared in heavy water ($D_2O$) and only the specific peak of MPEG was observed, while all of the peaks were confirmed in dimethyl sulfoxide (DMSO). These results indicated that MTX was complexed with chitosan and then formed an ion complex inner-core of the polymeric micelle in an aqueous environment. The drug contents of the polymeric micelle were around $4{\sim}12%$ and the loading efficiency of MTX in the polymeric micelles was higher than 60% (w/w) for all of the formulations. The cytotoxicity of MIX and MTX-incorporated polymeric micelle against CT26 tumor cells was not significantly changed.
Hydrogels for wound dressing from a mixture of poly(vinyl alcohol) (PVAL), poly(N-vinyl pyrrolidone) (PVP), hexylene glycol (HG) and chitosan were made. The hydrogels were obtained by physical crosslinking of freezing and thawing, chemical crosslinking of irradiation, and irradiation after freezing and thawing of mixture solutions. The solid concentration of PVAL/PVP/HG/chitosan was 15 wt%. The concentration of chitosan was 0.3 wt%, and the ratio of PVAL/PVP was 6:4. The concentration of HG was in the range of 1∼5 wt%. The number of repeated freezing and thawing was in the range of 1∼3 times, and gamma irradiation doses were 25, 35 and 50 kGy. The physical properties such as gelation, water absorption and gel strength of hydrogels were examined. Gel content and gel strength decreased as HG concentration increased, whereas degree of swelling increased. Gel content and gel strength increased as irradiation dose and the number of freezing and thawing increased, whereas degree of swelling decreased. The hydrogels were evaluated for the healing effect for animals and for the antibacterial effect.
Chitosan, a natural polymer, has been importantly considered as biomedical materials due to its good biocompatibility and various bio-active characteristes. Water soluble chitosan was then copolymerized EGDMA(ethylene glycol dimethacrylate; used as a cross-linking agent for the free-radical copolymerization), MMA (methylmethacrylate), MA (methacrylic acid) in the presence of AIBN (azobisisobutyronitrile) as a radical initiator. The water content and visible transmissibility, ultimate strength of copolymerized ophthalmic polymer were measured to be 24$\sim$59%, 88$\sim$89% and 0.1$\sim$2.4 Kgf, respectively. And also, we tested for antimicrobial activities against staphylococcus aureus, Pseudomonas aeruginosa. They showed that in case of antimicrobial activities, the values including chitosan were much higher than that of the polymers of no including chitosan, suggesting that the copolymer can be used as a novel ophthalmic material of high performance.
Journal of the Korean Society of Food Science and Nutrition
/
v.33
no.7
/
pp.1224-1229
/
2004
The blend films of poly(3-hydroxybutyric acid) (PHB) with chitosan were prepared and water vapor transmission rate, oxygen permeability and lipid permeability of the PHB/chitosan films were measured. Additionally, the biodegradability of the PHB/chitosan films was also evaluated. Water vapor transmission rate and oxygen permeability of the films decreased by the addition of chitosan. The addition of polyethylene glycol (PEG, plasticizer), however, increased the water vapor transmission rate and oxygen permeability of the films. In the evaluation of lipid permeability, all the films except PHB (the film made of only PHB) and PHB-P (the film made of PHB and PEG) did not permeate beef tallow for 24 hours. The consumed oxygen for PHB/chitosan films during incubation was greater than that for the control on the biodegradability determination of the films, which implies that PHB/chitosan films were degraded by the microorganisms. The higher PHB ratio of the films was, the faster biodegradation of the films occurred.
Wounds that heal with excessive scar formation result in poor functional and aesthetic outcomes. To address this, in our study, visible light cured glycol chitosan (GCH) hydrogels containing endothelial growth factor (EGF) and basic fibroblast growth factor (bFGF) were prepared (GCH-EGF, GCH-FGF and GCH-EGF/FGF) and evaluated their efficacies on the improvement of wound healing in vivo. In vitro release test showed that the growth factors were released in a sustained manner along with initial burst for 24 h. In vitro cell proliferation assay of L-929 mouse fibroblast cell line resulted in the superior ability of GCH-EGF/FGF on the rate. In vivo results demonstrated that the growth factor loaded GCHs further enhanced wound healing compared with GCH. In particular, GCH-EGF/EFG showed the most remarkable wound healing effect among the samples.
Triblock copolymers from poly(ethylene glycol) (PEG) and D,L-lactide or $\varepsilon$-carprolactone were synthesized to prepare semi-interpenetrating polymer network (semi-IPN) with chitosan by U.V. irradiation method. Then, solute permeation through these semi-IPNs hydrogels were investigated. The structures of semi-IPNs were confirmed by FT-IR spectroscopy and wide angle X-ray diffractometer (WAXD). Equilibrium water content (EWC) of these hydrogels was in the range of 67-75%. The crystallinity, thermal properties and mechanical properties of semi-IPNs hydrogels were studied. All the hydrogels revealed a remarkable decrease in crystallinity as compared with PEG macromer itself. The tensile strengths of semi-IPNs hydrogels in dry state were rather high, but those of hydrogels in wet state decreased drastically. The permeabilities of solutes of hydrogels followed the swelling behaviors and were regulated by solute size.
Sun Jung Yoon;Young Jae Moon;Heung Jae Chun;Dae Hyeok Yang
Nanomaterials
/
v.9
no.12
/
pp.1652-1663
/
2019
Osteosarcoma (OSA) is a difficult cancer to treat due to its tendency for relapse and metastasis; advanced methods are therefore required for OSA treatment. In this study, we prepared a local drug-delivery system for OSA treatment based on doxorubicin·hydrochloride (DOX·HCl)/cisplatin (CP)-loaded visible light-cured glycol chitosan (GC) hydrogel/(2-hydroxypropyl)-beta-cyclodextrin (GDHCP), and compared its therapeutic efficiency with that of DOX·HCl- and CP-loaded GC hydrogels (GD and GHCP). Because of diffusion driven by concentration gradients in the swollen matrix, the three hydrogels showed sustained releases of DOX·HCl and CP over 7 days, along with initial 3-h bursts. Results of in vitro cell viability and in vivo animal testing revealed that GDHCP had a stronger anticancer effect than GD and GHCP even though there were no significant differences. Body weight measurement and histological evaluations demonstrated that the drug-loaded GC hydrogels had biocompatibility without cardiotoxicity or nephrotoxicity. These results suggested that GDHCP could be a good platform as a local drug-delivery system for clinical use in OSA treatment.
Sucrose-glucan glucosyltransferase (Gtf) is an important enzyme involved in the cavity formation process where insoluble glucan is synthesized. In this study, we purified Gtf from Streptcoccus mutans Ingbritt through ammonium sulfate precipitation, Sephadex G-150, CM-Sephadex, and DEAE-Sephadex column chromatographies. A 13-fold of purification was achieved with a total yield of 6.3%. The apparent molecular mass of the enzyme was determined to be 66 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The optimal pH and temperature were established to be 6.0 and $40^{\circ}C$, respectively. The enzyme activity could be inhibited to 22-59% by 1 mM $Hg^{2+}$, $Cu^{2+}$ and $Al^{3+}$, and to 68% by 1 mM EDTA. It was also inhibited 40% by 2 mM xylitol and 35-45% by 0.05% soluble chitosan, glycol chitosan, and glycol chitin. This is the first report to reveal the inhibition effect of chitin derivatives on Gtf activity, which may be further applicable to develop gargles to overcome cavity.
A thennostable chitosanase was purified from Bacillus sp. KFB-C108, by fractionation of 30 to 70% saturation with ammonium sulfate, DEAE-Toyopearl chromatography, Butyl-Toyopearl chromatography, and TSK-Gel HW-55F gel filtration. The purified enzyme showed a single band on sodium dodecyl sulfate polyacrylamide gel electrophoresis, and the molecular weight was estimated to be 48 kDa. The enzyme degraded soluble chitosan and colloidal chitosan, but did not degrade glycol chitosan, chitin, and the other compounds investigated. There was no effect on the chitosanase activity by treatment with chelating agents, alkylating agents, and various metals investigated, and only cobalt ions inhibited the activity. Optimum temperature and pH were $55^{\circ}C$ and 6.5, respectively. The enzyme was stable after heat treatment at $80^{\circ}C$ for 10 min or $70^{\circ}C$ for 30 min and fairly stable in several organic solvents as well. Chitosan was hydrolyzed to $(GlcN)_4$as a major product by incubation with the enzyme.
Two types of chitosanases produced from Aspergillus fumigatus KH-94 were purified by ion exchange and gel permeation chromatography. Molecular weights of the enzymes are 22.5 kDa (chitosanase I) and 108 kDa (chitosanase II). pI, optimum pH, and temperature of chitosanase I are 7.3, 5.5, and 70-$80^{\circ}C$, respectively, and those of chitosanase II are 4.8, 4.5~5.5, and 50~$60^{\circ}C$, respectively. Activities of both chitosanases were increased by $Mn^{2+}$ but inhibited by $Cu^{2+}$ and $Hg^{2+}$ . Chitosanase I has endo-splitting activity that hydrolyzes chitopentaose, chitohexaose, and chitosan to chitobiose, chitotriose, and chitotetraose, whereas chitosanase II has exo-splitting activity that hydrolyzes chitobiose and chitosan to glucosamine. Chitosanase II was found to have transglycosylation activity also in the reaction of 2% more chitooligosaccharides as a substrate and at the initial reaction. The higher degree of deacetylation, the stronger activities of chitosanase Iand II toward chitosans. Both chitosanases could hydrolyze chitosan and glycol chitosan but not chitin, cellulose, and carboxymethyl cellulose. To produce higher degree of polymerization of chitooligosaccharides, chitosanase I was used and yielded 80% of recovery.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.