• Title/Summary/Keyword: glycocholic acid

Search Result 5, Processing Time 0.022 seconds

Bile acids from a Marine Sponge-Associated Fungus Penicillium sp.

  • Pil, Gam Bang;Won, Ho Shik;Shin, Hee Jae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.20 no.2
    • /
    • pp.41-45
    • /
    • 2016
  • Chemical investigation of a marine-derived fungus, Penicillium sp. 108YD020, resulted in the discovery of six bile acid derivatives, glycocholic acid (1), glycocholic acid methyl ester (2), cholic acid (3), glycochenodeoxycholic acid (4), glycodeoxycholic acid methyl ester (5), and cholic acid methyl ester (6). The structures of six bile acid derivatives 1-6 were determined by the detailed analysis of 1D, 2D NMR and LC-MS data, along with chemical methods and literature data analysis.

Biosynthesis of Bile Acids in a Variety of Marine Bacterial Taxa

  • Kim, Doc-Kyu;Lee, Jong-Suk;Kim, Ji-Young;Kang, So-Jung;Yoon, Jung-Hoon;Kim, Won-Gon;Lee, Choong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.403-407
    • /
    • 2007
  • Several marine. bacterial strains, which were isolated from seawater off the island Dokdo, Korea, were screened to find new bioactive compounds such as antibiotics. Among them, Donghaeana dokdonensis strain DSW-6 was found to produce antibacterial agents, and the agents were then purified and analyzed by LC-MS/MS and 1D- and 2D-NMR spectrometries. The bioactive compounds were successfully identified as cholic acid and glycine-conjugated glycocholic acid, the $7{\alpha}$-dehydroxylated derivatives (deoxycholic acid and glycodeoxycholic acid) of which were also detected in relatively small amounts. Other marine isolates, taxonomically different from DSW-6, were also able to produce the compounds in a quite different production ratio from DSW-6. As far as we are aware of, these bile acids are produced by specific members of the genus Streptomyces and Myroides, and thought to be general secondary metabolites produced by a variety of bacterial taxa that are widely distributed in the sea.

Effect Extraction Conditions on Bile acids Binding Capacity in vitro of Alginate Extracted from Sea Tangle (Laminaria spp.) (다시마 alginate와 bile acids의 결합능에 미치는 추출조건의 영향)

  • YOU Byeong-Jin;IM Yeong-Sun;JEONG In-Hak;LEE Kang-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.1
    • /
    • pp.31-38
    • /
    • 1997
  • Changes in bile acid binding rapacity in vitro and physical properties of alginate extracted from sea tangle (Laminaria spp.) and residue after extracting alginate (RAEA) were investigated. For the purpose, extraction conditions controlled under 1, 3 and $5\%$ of sodium carbonate solution, and 1, 3, 5 and 10 hours of extraction time at $60^{\circ}C$. The less sea tangle had particle size and the higher concentration of sodium carbonate solution increseded, the more yield of alginate gained. High concentration of sodium carbonate solution and long extraction time resulted in weakly binding capacity in vitro by alginate. Among four bile acids, binding capacites with alginate were in the order of cholic, taurocholic acid>glycocholic acid>deoxycholic acid. The binding capacity of RAEA was rated at almost same degree of alginate. For increasing the binding capacity of bile acids by alginate, it was subject to high viscosity and degree of polymerization.

  • PDF

Bile Salt Deconjugation Activity of Lactobacillus Strains Isolated from Yogurt Products (요구르트에서 분리한 Lactobacillus들의 담즙산염 분해 능력)

  • 김근배;이재환;임광세;허철성;배형석;백영진;김현욱
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.5
    • /
    • pp.385-390
    • /
    • 1999
  • To investigate bile salt hydrolase activities of the bacterial strains isolated from fermented milk products, 21 strains of Lactobacillus were tested for their abilities to produced cholic acid from taurocholic and glycocholic acids. The production of cholic acid was measured by HPLC analysis during the growth in broth media for 24hrs. All strains of Lactobacillus acidophilus and L. plantarum deconjugated both taurocholate and glycocholate, whereas none strains of L. delbrueckii subsp. bulgaricus, L. casei subsp. casei, L. casei subsp. rhamnosus, L, reuteri did. L. acidophilus stains isolated from yogurts had the higher decojugation activities on glycocholate than taurocholate, however, L. acidophilus 1009 isolated from the human intestine showed the similar deconjugation activities on both taurocholate and glycocholate.

  • PDF

Cloning and Characterization of a Bile Salt Hydrolase from Enterococcus faecalis Strain Isolated from Healthy Elderly Volunteers (사람 분변에서 분리한 Enterococcusfaecalis가 생성하는 BileSaltHydrolase의 특징)

  • Eom, Seok-Jin;Kim, Geun-Bae
    • Journal of Dairy Science and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.49-54
    • /
    • 2011
  • Bile salt hydrolase (BSH, EC 3.5.1.24) activity, which cleaves amide bond between carboxyl group (bile acid) and amino group (glycine or taurine), is commonly detected in gut-associated species of human and animal. During the screening of BSH active strains from the fecal samples of elderly human volunteers, strain CU30-2 was isolated on the basis of the highly active BSH producing activity. A bsh gene of the isolate was cloned into the pET22b expression vector and overexpressed in Escherichia coli BL21 (DE3) Gold by induction with 1mM IPTG. The overexpressed BSH enzyme with 6x His-tag was purified with apparent homogeneity using a $Ni^+$-NTA agarose column and characterized. The BSH enzyme of E. faecalis CU30-2 exhibited approximately 50 times higher activity against glycol-conjugated bile salts than tauro-conjugated bile salts having the highest activity against glycocholic acid. Considering the prevalence of E. faecalis strains in the human GI tract and glycol-conjugates dominated bile acid composition of human bile, further study is needed to investigate the impact of the BSH activity exerted by E. faecalis strains to the host as well as to the BSH producing strains.

  • PDF