• Title/Summary/Keyword: glycerin addition

Search Result 31, Processing Time 0.021 seconds

Solubilization of Biphenyl Dimethyl Dicarboxylate in Aqueous Solution (수용액중의 비페닐디메칠디카르복실레이트의 가용화)

  • Bae, Joon-Ho;Park, Eun-Seok;Chi, Sang-Cheol
    • Journal of Pharmaceutical Investigation
    • /
    • v.27 no.3
    • /
    • pp.199-205
    • /
    • 1997
  • In order to formulate biphenyl dimethyl dicarboxylate(DDB) aqueous solutions, the effects of various solubilizing agents such as cosolvents(PG, PEG 400, glycerin, ethanol), surfactants,$(poloxamer\;407,\;Cremophor^{\circledR}\; RH40,\;Solutol^{\circledR},\;Tween\;80,\;sodium\;lauryl\;sulfate)$, complexation agent$(CELDEX^{\circledR}\;CH-20)$ and others(urea, niacinamide, propylene carbonate, HPMC) on the solubility of DDB in water were evaluated. The solubility of DDB in water was about $0.21\;{\mu}g/ml\;at\;20^{\circ}C$, while its solubility in PEG 400 was 5,000 times higher than that in water. 60% PEG 400 aqueous solution was selected as an optimum solvent system, and surfactants or other solubilizing agents were added to prevent DDB from recrystalization. The addition of surfactants in water increased the solubility of DDB from 15- to 34-fold, however, $CELDEX^{\circledR}\;CH-20$ and other agents studied showed negligible effects on the solubility of DDB in water. The 60% PEG 400 aqueous solution containing 5% $Cremophor^{\circledR}$ RH40 was appeared as the formula of choice. It showed acceptable physical stability after stored for 7 days at $4^{\circ}C$.

  • PDF

Supression Functions of Retrogradation in Korean Rice Cake(Garaeduk) by Various Surfactants (다양한 Surfactants의 가래떡 노화 억제 기능)

  • 신완철;송재철
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.7
    • /
    • pp.1218-1223
    • /
    • 2004
  • This study was conducted to investigate supression functions of retrogradation in Korean rice cake by various surfactants. Samples were manufactured by multifunctional extruder and wrapped with polyethylene wrap at 2$0^{\circ}C$ for four days of storage. In the thermal characteristics studies on supression of retrogradation, the Korean rice cake with various surfactants had lower onset temperature compared to the control. The Korean rice cake with GLF (glycerin fatty acid ester) had the lowest onset temperature. In case of peak temperatures, they showed a similar tendency to the onset temperature. All the Korean rice cakes added with various surfactants had low melting enthalpy values compared to the control. In addition the Korean rice cake with GLF added had the lowest melting enthalpy. Melting spreadabilities of the Korean rice cake added with GLF, SUF, SOF and PST were higher values than that of the control. The n value of Avrami exponent was 0.90 in case of the Korean rice cake added with GLF and its retrogradation was slowly progressed compared to the other samples. The Korean rice cake with GLF had the lowest rate constants of retrogradation. The recrystallinity of the Korean rice cake with GLF was relatively lower than that of the control. The rate constant of retrogradation showed the lowest value in case of GLF. All the Korean rice cakes added with surfactants were in good compared to the control in sensory characteristics. GLF exhibited the best effect in sensory characteristics during storage. In conclusion surfactant showed suppression effect of retrogradation in Korean rice cake, and GLF was best effective.

Effect of Additive, Storage Temperature and Time on the Texture Properties of Baikseolgi (첨가물, 저장온도 및 저장시간에 따른 백설기의 텍스쳐 특성)

  • Kim, Myung-Hwan
    • Applied Biological Chemistry
    • /
    • v.41 no.6
    • /
    • pp.437-441
    • /
    • 1998
  • The effects of sucrose fatty acid ester (SE, 1% w/w) and glycerin (GL, 1% v/w) additions, storage temperature$(0,\;20\;and\;70^{\circ}C)$, and time $(0{\sim}6\;day)$ on texture properties, hardness(H), cohesiveness(O), chewiness(C) and rheological property(R) of Baikseolgi were studied. The H of Baikseolgi increased sharply in the early stage of storage at 0 and $20^{\circ}C$, while increased gently at $70^{\circ}C$ with increasing storage time. After 6 days of storage, the H of Baikseolgi at $20^{\circ}C$ had a little lower than that at $0^{\circ}C$. However, the H of Baikseolgi at $70^{\circ}C$ was 10.7% of that at $0^{\circ}C$. The addition of GL had greater effect on the reduction of H than that of SE. The H of control, SE and GL additions were 336, 216 and $$174\;g_f, respectively, after 6 days at $70^{\circ}C$. The O of Baikseolgi at $70^{\circ}C$ were higher than those at $0^{\circ}C$. The O of GL added Baikseolgi had the highest value and the second and the third were SE added and control, respectively. The O of Baikseolgi decreased with increasing storage time. The C of Baikseolgi of increased with increasing storage time, which had similar curve patterns to the H of Baikseolgi. Instantaneous stress and equilibrium stress of Baikseolgi decreased with increasing storage temperature. The affection of viscous element increased and that of elastic element decreased with increasing storage temperature.

  • PDF

Phase Behavior Study of Fatty Acid Potassium Cream Soaps (지방산 칼륨 Cream Soaps 의 상거동 연구)

  • Noh, Min Joo;Yeo, Hye Lim;Lee, Ji Hyun;Park, Myeong Sam;Lee, Jun Bae;Yoon, Moung Seok
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.1
    • /
    • pp.55-64
    • /
    • 2022
  • The potassium cream soap with fatty acid called cleaning foam has a crystal gel structure, and unlike an emulsion system, it is weak to shear stress and shows characteristics that are easily separated under high temperature storage conditions. The crystal gel structure of cleansing foams is significantly influenced by the nature and proportion of fatty acids, degree of neutralization, and the nature and proportion of polyols. In order to investigate the effect of these parameters on the crystal gel structure, a ternary system consisting of water/KOH/fatty acid was investigated in this study. The investigation of differential scanning calorimeter (DSC) revealed that the eutectic point was found at the ratio of myristic acid (MA) : stearic acid (SA) = 3 : 1 and ternary systems were the most stable at the eutectic point. However, the increase in fatty acid content had little effect on stability. On the basis of viscosity and polarized optical microscopy (POM) measurements, the optimum degree of neutralization was found to be about 75%. The system was stable when the melting point (Tm) of the ternary system was higher than the storage temperature and the crystal phase was transferred to lamellar gel phase, but the increase in fatty acid content had little effect on stability. The addition of polyols to the ternary system played an important role in changing the Tm and causing phase transition. The structure of the cleansing foams were confirmed through cryogenic scanning electron microscope (Cryo-SEM), small and wide angle X-ray scattering (SAXS and WAXS) analysis. Since butylene glycol (BG), propylene glycol (PG), and dipropylene glycol (DPG) lowered the Tm and hindered the lamellar gel formation, they were unsuitable for the formation of stable cleansing foam. In contrast, glycerin, PEG-400, and sorbitol increased the Tm, and facilitated the formation of lamellar gel phase, which led to a stable ternary system. Glycerin was found to be the most optimal agent to prepare a cleansing foam with enhanced stability.

Effects of the Addition of Metallic Salts and Polyhydric Alcohols on the Formation and the Triboelectric Charge of Zinc Complex-compound Particle (아연 착화합물의 입자형성 및 마찰대전량에 미치는 금속염 및 다가알코올 첨가의 영향)

  • In, Se-Jin
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.249-256
    • /
    • 2013
  • The experiments have been performed to obtain zinc complex compound with smaller particle sizes, which is used as a charge control agent in manufacturing toner. Metallic salts and polyhydric alcohols have been studied to investigate their effects on the formation and the triboelectric charge of zinc complex-compound particle with different sizes. Reactants such as zinc chloride and 3,5-di-tert.-butyl salicylic acid have been used to form the complex compound. Polyethylene glycol (PEG-300), glycerin and ethylene glycol have been added into the zinc chloride solution beforehand to lower the reaction rate in the formation of zinc complex-compound. Aluminium(III) chloride has been mixed in the zinc chloride solution beforehand to restrain the particle size from growing. When PEG-300 and aluminium(III) chloride are used to lower the reaction rate and to restrain the particle size from growing, the average particle size of zinc complex compound decreases from $5.28{\mu}m$ to $2.33{\mu}m$, which was 44.1% of $5.28{\mu}m$.

Formulation of Multivitamin Solutions for Infants (유아용 종합비타민 액제의 제제 설계)

  • Hong, Ji-Woong;Park, Eun-Seok;Chi, Sang-Cheol
    • YAKHAK HOEJI
    • /
    • v.40 no.3
    • /
    • pp.243-250
    • /
    • 1996
  • In order to formulate aqueous multivitamin solutions containing both oil-soluble (A, D, E) and water-soluble vitmains ($B_1,\;B_2,\;B_6,\;B_{12}$, C and niacinamide) in 1ml-dose, the effects of various additives such as cosolvents (propylene glycol, polyethylene glycol, glycerin), a sweetener (sorbitol) and a surfactant (Cremophor$^{\circledR}$ RH40) on the solubility of oil-soluble vitamins in water were evaluated. Cremophor$^{\circledR}$ RH40 showed the excellent capacity on the solubilization of oil-soluble vitamins, and the simultaneous addition of cosolvents and surfactant resulted in synergetic effects on the solubilization of oil-soluble vitamins. The effects of the combination of the cosolvents and sweetener on the stability of multivitamin solutions were also evaluated by determining the amount of vitmain A and $B_1$ remained in the solutions after storing at $40^{\circ}C$ for 9 weeks. The formulation consisting of Cremophor$^{\circledR}$ RH40 15%, PG 20%, and sorbitol 20% resulted in the best stability of vitamin A and $B_1$. The stability of vitamin A and $B_1$ in this formulation was evaluated at 50, 60, and $70^{\circ}C$ up to 40 days. The shelf-lives of vitamin A and $B_1$ in the formulation, calculated using the Arrhenius equation, were 1,521 days and 475 days at $20^{\circ}C$, respectively.

  • PDF

Manufacturing and Characteristics of Biodegradable Materials Based on Starch-Citric Acid for Anti-Particulate Scattering (전분-구연산을 기반으로 한 생분해성 비산방지용 소재의 제조 및 특성 분석)

  • Lee, Ji Sung;Lee, Won Gyu
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.443-449
    • /
    • 2021
  • A biodegradable shatterproof thin film material having excellent water resistance and applicability was prepared by crosslinking through esterification of starch and citric acid. In order to improve the thin film formation and physical properties of these materials, PVA and glycerin were added to secure the flexibility of the applied thin film. In addition, conditions for optimizing material functionality such as swelling degree and solubility in water according to reaction time, temperature, and concentrations of raw materials and additives were analyzed. The crosslinking reaction of starch and citric acid was confirmed by FT-IR analysis, and it was found that single and multiple esterification reactions occurred simultaneously in these reaction processes. It can be seen that the crosslinked starch-citric acid thin film material was decomposed about 95% after 12 weeks after landfilling, and thus biodegradability was excellent.

Survey on the Use of Hand Sanitizer and Component Analysis (손소독제 사용 실태 조사 및 성분 분석)

  • Yoon, Hye-Kyung;Lee, Eun-Ji;Hur, Ye Lim;Park, Na-Youn;Kho, Younglim
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.6
    • /
    • pp.702-709
    • /
    • 2020
  • Objectives: Hand sanitizer is made with ethyl alcohol as the main ingredient. Problems related to the use of hand sanitizers and cases of harm caused by the use of hand sanitizers are occurring. This study investigated the usage behavior and recognition level of people using hand sanitizer and identified the chemical components listed in the component label of hand sanitizer. In addition, the methanol and isopropanol contained in hand sanitizer were quantified using HS-GC-MSD. Methods: The investigation of the behavior and recognition of hand sanitizer usage was conducted through a survey of 143 college students and adults. The components marked on 34 types of hand sanitizers were investigated, and methanol and isopropanol concentrations were analyzed using the HS-GC-MSD method. Results: According to the survey, 57% of respondents use hand sanitizers two to three times per day, 92.3% of them do so when in public places and 41.3% of them do so at home. Ethanol, purified water, carbomer, glycerin, and triethanolamine were the ingredients listed in the hand sanitizer. Among the 34 samples, methanol and isopropyl alcohol were detected in 33 samples, the concentration range for methanol was ND-567 ppm, and the concentration range of isopropyl alcohol was ND-2121 ppm. Conclusion: The results of this study have shown that hand sanitizers are being used constantly every day, and methanol, which is not included in the marked content, was detected in a significant concentration compared to wet tissue. It has been found that maintenance of hand sanitizer manufacturing standards and training on how to use them are needed.

A Study on the Direction of Developing a Simulator for Performance Evaluation of Pulse Wave Detectors Through a Review of the Development Status of Cardiovascular Simulators (심혈관계 시뮬레이터 개발 동향 분석을 통한 맥파검사용기기 성능평가 시뮬레이터 연구개발 방향 모색)

  • Lee, Ju-Yeon;Kim, Jaeyoung;Go, Dong-Hyun;Lee, Ji-Won;Lee, Tae-Hee;Park, Chang-Won;Lee, Su-Kyoung
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.136-146
    • /
    • 2022
  • In this study, it is intended to provide basic data that can help develop a cardiovascular simulator for performance evaluation of pulse wave detectors by identifying the development status of domestic and overseas cardiovascular simulators. A total of 119 papers were selected by excluding duplicate literature, gray literature, and literature not related to a cardiovascular simulator. Based on the selected literature, the research trend of cardiovascular simulators was analyzed. As a result of analyzing the purpose of the study, most of the simulators were developed to evaluate the hemodynamic properties of artificial hearts and valves. In addition, it was used for simulation evaluation or hemodynamic studies such as pulse wave studies. As a result of analyzing configurations of the simulators, a heart most often consisted of only one left ventricle. For blood vessels, the Windkessel model was most often constructed using chambers and valves. In most studies, blood was reproduced by mixing glycerin and water to reproduce both density and viscosity. In addition, as a result of analysis from the perspective of medical device performance evaluation, simulators for evaluating artificial heart and artificial valves have been studied a lot, whereas simulators for blood pressure, pulse wave, and blood flow devices have been relatively insignificant. Based on the review results, we suggested considerations when developing a simulator for performance evaluations of a pulse wave detector.

Effect of Additives on the Physicochemical Properties of Acetaminophen Liquid Suppository (아세트아미노펜 액상좌제의 물리화학적 특성에 미치는 첨가제의 영향)

  • Choi, Han-Gon;Jung, Jae-Hee;Ryu, Jei-Man;Lee, Mi-Kyung;Kim, In-Sook;Lee, Beom-Jin;Kim, Chong-Kook
    • YAKHAK HOEJI
    • /
    • v.42 no.3
    • /
    • pp.290-295
    • /
    • 1998
  • To optimize the formulation of acetaminophen liquid suppository, the effect of additives on the physicochemical properties of liquid suppository base was investigated. The physi cochemical properties of P 407/P 188 (15/15%) (abbreviated in 15/15) and P 407/P l88 (15/20%) (abbreviated in 15/20) were measured after the addition of following additives; 2.5% acetaminophen as an active ingredient, vehicle components (5% ethanol, 5% propylene glycol, 5% glycerin), preservatives (0.1% sodium benzoate, 0,1% methylparahydroxybenzoate, 0.1% propylparahydroxybenzoate) and 1% of sodium chloride as an ionic strength controlling agent. Poloxamer gel was prepared with three different buffer solutions (pH 1.2, 4.0 and 6.8) and the physicochemical properties, gelation temperature, gel strength and bioadhesive force, were determined. In the results, the effect of additives on the physicochemical properties was dependent on their bonding capacities including hydrogen bonding and cross-linking bonding. Because the hydrogen-bonding capacities of acetaminophen, ethanol and propylene glycol were smaller than that of poloxamer, the binding force of poloxamer gel became weak by their putting in between poloxamer gel. Therefore, the gelation temperature (15/15, $35.7^{\circ}C$ vs 37.0, 39.4 $38.2^{\circ}C$; 15/20, $29.2^{\circ}C$ vs 31.2, 32.0, $30.3^{\circ}C$) increased, and gel strength (15/15, 4.03 see vs 2.72, 2.08, 3.12sec; 15/20, 300g vs 50, 50, 200g) and bioadhesive force (15/15, $6.8{\times}10^2\;dyne/cm^2$ vs 3.2, 6.0, $6.0{\times}10^2\;dyne/cm^2$; 15/20, $97.3{\times}10^2\;dyne/cm^2$ vs 11.1, 89.5, $92.0{\times}10^2\;dyne/cm^2$) decreased. Furthermore, the binding force of poloxamer gel became strong due to the hydrogen-bonding capacities of glycerin and the cross-liking bonding of sodium salt. Then, the gelation temperature (15/15, 35.0, $32.1^{\circ}C$; 15/20, 26.0, $21.0^{\circ}C$) decreased, and gel strength (15/15, 6.51 see, 300g; 15/20, 500, 650g) and bioadhesive force (15/15, 7.2, $81.6{\times}10^2\;dyne/cm^2$; 15/20, 112.3, $309.2{\times}10^2\;dyne/cm^2$) increased. The effect of pH on the physicochemical properties of poloxamer gel was dependent on the ingredients with which the buffer solutions were prepared. Poloxamer gels prepared with pH 1.2 and 4.0 buffer solutions had the increasing gelation temperature (15/15, 37.5, $38.1^{\circ}C$; 15/20, 33.1, $34.0^{\circ}C$) and the decreasing gel strength (15/15, 2.98, 3.81sec; 15/20, 200, 200g) and bioadhesive force (15/15, $7.0{\times}10^2dyne/cm^2$; 15/20, $74.0{\sim}88.1{\times}10^2dyne/cm^2$) owing to HCl. Poloxamer gel prepared with pH 6.8 buffer solutions had the decreasing gelation temperature (15/15, $27.2^{\circ}C$; 15/20, $22.3^{\circ}C$) and the increasing gel strength (15/15, 400g; 15/20, 550g) and bioadhesive force (15/15, $207.0{\times}10^2dyne/cm^2$; 15/20, $215.0{\times}10^2dyne/cm^2$) due to the cross-linking bonding of $NaH_2PO_4\;and\;K_2HPO_4$.

  • PDF