• Title/Summary/Keyword: glutathione-s-transferase (GST)

Search Result 515, Processing Time 0.035 seconds

Resistance against white spot syndrome virus (WSSV) infection in wild marine crab Gaetice depressus by injection of recombinant VP28 protein

  • Kim, Chun Soo;Choi, Seung Hyuk;Kim, Min Sun;Kim, Ki Hong
    • Journal of fish pathology
    • /
    • v.27 no.1
    • /
    • pp.11-16
    • /
    • 2014
  • The resistance against white spot syndrome virus (WSSV) infection in wild marine crab Gaetice depressus by the immunization of a recombinant glutathione-S-transferase (GST) fused VP28 protein (GST-VP28) was evaluated. The cumulative mortalities of GST-VP28 injected groups were lower than those of the control groups at 10 days of post-challenge, and the time to death of 50% crab ($TD_{50}$) was delayed by the immunization using GST-VP28. The group boosted with GST-VP28 after 2 weeks of primary immunization clearly showed longer $TD_{50}$ than non-boosted group against challenge with WSSV. This result suggests that boosting with the antigen protein elicit stronger immune responses similar to adaptive immune responses of vertebrates. However, the short $TD_{50}$ was observed in the group challenged at 3 weeks post boosting comparing to the group challenged at 1 week post boosting. This suggests that the protective strength of immunization decreased by the time.

Expression of Human p53 Gene as Glutathione S-transferase Fusion Proteins in Escherichia coli (사람의 p53 유전자와 Glutathione S-Transferase와의 융합 단백질의 대장균에서의 발현)

  • 오상진
    • Korean Journal of Microbiology
    • /
    • v.31 no.4
    • /
    • pp.279-285
    • /
    • 1993
  • Alterations of the p53 gene arc among the most frequent genetic changes in human cancer and often result in increased levels of p53 protein within the malignant cells. Detection of accumulated p53 protein can be a useful prognostic tool in human cancer. In order to make polyclonal antibodies for immunohistochemical screening. human p53 gene was expressed in E. coli in the form of GST (glutathione S-transfi.:rase) fusion proteins. Two p53 gene fragments. which were N('()I small fragment encoding amino acid residues of 1-151-: and Ncol large fragment of 159-393. were subeloned into the unique BamHI site present within the pGEX-2T vector using BamHI linker and recombinant plasmids pGTNS and pGTNL were constructed. respectively. The p53 cDNA fragment (from pC53-$SN_3$,) encoding amino acid 38-145 (proline at residue 72) was amplified by polymerase chain reaction(PCR). The amplified DNA was digested with BamHI and Prull and inserted into the BamHI-Smal sites of pG EX-2T and recombinant plasmid pGTBP was constructed. After IPTG induction of these plasmids for 4 hours. fusion proteins were purified from E. coli extracts with glutathione Sepharose beads. The bound proteins were resolved by 10% SDS-polyacrylamide gel electrophoresis and the molecular weights were 54 kDa. 53 kDa and 40 kDa. respectively. Approximately one milligram of fusion proteins were purified from 1 -liter cultures.

  • PDF

Effects of Paeoniae Radix Aqua-Acupuncture Solution on Tert-Butyl Hydroperoxide Induced Lipid Peroxidation and Antioxidative Enzymes in Cultured Rat Liver Cells (작약 약침액이 tert-butyl hydroperoxide 로 유도된 흰쥐 배양 간세포의 지질과산화반응 및 항산화효소 활성에 미치는 영향)

  • Moon, Jin-Young
    • Journal of Acupuncture Research
    • /
    • v.17 no.3
    • /
    • pp.176-187
    • /
    • 2000
  • Objectives : This study was purposed to investigate the antioxidative effects of Paeoniae radix aqua-acupuncture solution(PR) on culture liver cell system, lipid peroxidation and antioxidative enzyme activities in tert-butyl hydroperoxide(t-BHP) treatmented conditions. Methods : Cultured normal rat liver cell(Ac2F) were prepared and incubated with or without PR(at 2% volume in culture medium). After 16~18hr, cells placed in DMEM medium without serum, and then incubated with 1mM t-BHP for 2hr. Viable cells were detected by MTT assay, and the levels of lipid peroxide(LPO) were measured by TBA method. And catalase activity was measured as the decrease in hydrogen peroxide absorbance at 240nm on spectrophotometer using 30mM hydrogen peroxide. Superoxide dismutase(SOD) were assayed by recording the inhibition of nitro blue tetrazolium reduction with xanthine and xanthine oxidase. Glutathione peroxidase(GPX) activity was determined by the modified coupled assay developed by Paglia and Lawrence. The reaction was started by addition of 2.2mM hydrogen peroxide as substrate. The change in absorbance at 340nm was measured for 1min on spectrophotometer. Glutathione-S-transferase(GST) activity was assayed with CDNB as substrate and enzyme activity of GST towards the glutathione conjugation of CDNB. Results : Cell killing was significantly enhanced by addition of t-BHP compared to those of untreated group. PR pretreated cell resisted the toxic effects of t-BHP. LPO levels of t-BHP treatment group were significantly higher than other groups. This increased level was significandy reduced by PR pretreatment. The t-BHP treatment resulted in a decrease of catalase, GPX and GST activities. By contrast, PR pretreatment markedly increased compare to those of untreated groups. Conclusions : T-BHP which can produce intracellular free radical was used for inducer of the peroxidation of cellular lipids. PR protected the cell death induced by t-BHP and significantly increased cell viabiliry in the normal rat liver cell, and showed effective inhibition of lipid peroxidation, and elevations of catalase, GPX and GST activities. These results suggested that PR might play a protective role in lipid peroxidation by free radicals.

  • PDF

Effects of Dietary Supplemented Inorganic and Organic Selenium on Antioxidant Defense Systems in the Intestine, Serum, Liver and Muscle of Korean Native Goats

  • Chung, J.Y.;Kim, J.H.;Ko, Y.H.;Jang, I.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.1
    • /
    • pp.52-59
    • /
    • 2007
  • The present study was designed to assess whether dietary inorganic and organic selenium (Se) could affect antioxidant enzymes, including superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and glutathione-S-transferase (GST), and the level of malondialdehyde (MDA), a marker of lipid peroxidation, in the intestine, serum, liver, and gastrocnemius muscle of Korean native goats. A total of eighteen Korean native goats was allotted into three dietary groups, consisting of basal diet (CON), or basal diet with either 0.25 ppm inorganic (IOSEL) or 0.25 ppm organic Se (ORSEL), and fed the corresponding diets for 5 wks. Growth performance, including body weight and total gain, and blood biochemical profiles, including GSH-Px, were not significantly different between the three dietary groups. Also, the specific activities of SOD, GSH-Px, and GST, and the level of MDA in the intestinal mucosa and liver from goats were not substantially affected by either inorganic Se or organic Se. However, goats fed the diet containing organic Se showed a significant increase in GSH-Px and GST activities in the gastrocnemius muscle compared with those fed the basal diet. In conclusion, increased muscle GSH-Px and GST activities suggest that dietary organic Se may affect, at least in part, the antioxidant defense system in muscle of Korean native goats under the conditions of our feeding regimen.

The Comparison between FSGS and MCNS Using Proteomic Method in Childhood Nephrotic Syndrome; Preliminary Study (단백질체학을 이용하여 국소성 분절성 사구체 경화증과 미세 변화형 신증후군의 비교)

  • Kim, Sung-Do;Cho, Byoung-Soo
    • Childhood Kidney Diseases
    • /
    • v.13 no.2
    • /
    • pp.170-175
    • /
    • 2009
  • Purpose : FSGS do not respond well to any kind of therapy and gradually progress to end-stage renal disease. This study was conducted to investigate the difference of protein expression between MCNS and FSGS as a preliminary study for understanding the pathophysiology of FSGS. Methods : Renal biopsy samples of MCNS and FSGS were obtained, which was diagnosed by one pathologist. They were solubilized with a conventional extraction buffer for protein extraction. The solution was applied on immobilized linear gradient strip gel (pH 4-7) using IPGphor system. Silver staining was carried out according to standard method. Protein identification was done by searching NCBI database using MASCOT Peptide Mass Fingerprint software. Results : The differences in protein expressions between MCNS and FSGS were shown by increased or decreased protein spots. Most prominently expressed spot among several spots in FSGS was isolated and analyzed, one of which was glutathione S-transferase (GST) P1-1, whereas it was not found in MCNS. So GSTP1-1 was considered as the one of the key biomarkers in pathogenesis of FSGS. Conclusion : This result would be helpful in diagnosing FSGS and researching FSGS. Further studies for glutathione S-transferase P1-1 might be necessary to elucidate the mechanisms regarding FSGS.

Effect of Bulohwan-Decoction on Antioxidant Enzyme in Rat Brain (불로환(不老丸)을 투여한 흰쥐 뇌의 항산화효과에 관한 연구)

  • Park Jin-Sung;Goh Seong-Kyu;Lee Sun-Dong
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.5 no.1
    • /
    • pp.90-102
    • /
    • 2001
  • Objectives: Resently Oxidative stress of brain was proved the cause of Alzheimer and stroke sequel. It has important significance in prevention and treatment of cerebropathia that Bulnohwan used as formula of senescence delay have antioxidative effect. The purposes of this study is to investigate the effect of Bulnohwan on antioxidant defense systems such as thiobarbituric acid reactive substances(TBARS), Superoxide dismutase (SOD), Catalase (CAT), Glutathione peroxidase (GSH-PX), Glutathione S-transperase (GST), Glutathione (GSH) in rat brain. Method: Sprague - Dawley rats were divided into 3 groups; saline solution administered control group, Bulnohwan extract administered Experimental group I and Bulnohwan adminisrtrated, 40% dietary restricted Experimental group II. Animals were sacrificed at 12 weeks after treatment TBARS, SOD, CAT, GSH-PX, GST and GSH were measured in mts brain. Results: weight of brain was no stastical significance.(p>0.05) TBARS contents were significant decrease in Experimental group I, II. (p<0.001) SOD activity was stastical significance in Experimental group II, whereas it was no stastical significance Experimental group II.(p<0.0001) Catalase activites were significant increase in . (p<0.00l) Glutathione Peroxidase activites were significant increase in Experimental group I,II. (p<0.000l) Glutathione S-transferase activites were significant increase in Experimental group I, II. (p<0.000) However there were no statistical significance each other. Glutathione contents were significant increase in Experimental group I, II. (p<0.00l) Conclusions: According to the above results, it is considered that Bulohwan has antioxidants effect in rat brain. When Bulohwan goes with diet restriction, there has more Antioxidants effect in rat brain. but this study was perfored retrospectively. So more prospective studies about mutual relation of drugs are needed

  • PDF

Nitric oxide modulates antioxidant defense and the methylglyoxal detoxification system and reduces salinity-induced damage of wheat seedlings

  • Hasanuzzaman, Mirza;Hossain, Mohammad Anwar;Fujita, Masayuki
    • Plant Biotechnology Reports
    • /
    • v.5 no.4
    • /
    • pp.353-365
    • /
    • 2011
  • The present study investigates the possible regulatory role of exogenous nitric oxide (NO) in antioxidant defense and methylglyoxal (MG) detoxification systems of wheat seedlings exposed to salt stress (150 and 300 mM NaCl, 4 days). Seedlings were pre-treated for 24 h with 1 mM sodium nitroprusside, a NO donor, and then subjected to salt stress. The ascorbate (AsA) content decreased significantly with increased salt stress. The amount of reduced glutathione (GSH) and glutathione disulfide (GSSG) and the GSH/GSSG ratio increased with an increase in the level of salt stress. The glutathione S-transferase (GST) activity increased significantly with severe salt stress (300 mM). The ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT) and glutathione peroxidase (GPX) activities did not show significant changes in response to salt stress. The glutathione reductase (GR), glyoxalase I (Gly I), and glyoxalase II (Gly II) activities decreased upon the imposition of salt stress, especially at 300 mM NaCl, with a concomitant increase in the $H_2O_2$ and lipid peroxidation levels. Exogenous NO pretreatment of the seedlings had little influence on the nonenzymatic and enzymatic components compared to the seedlings of the untreated control. Further investigation revealed that NO pre-treatment had a synergistic effect; that is, the pre-treatment increased the AsA and GSH content and the GSH/GSSG ratio, as well as the activities of MDHAR, DHAR, GR, GST, GPX, Gly I, and Gly II in most of the seedlings subjected to salt stress. These results suggest that the exogenous application of NO rendered the plants more tolerant to salinity-induced oxidative damage by enhancing their antioxidant defense and MG detoxification systems.

간손상에 대한 해독제 개발 및 안전성 평가 방법에 관한 연구

  • 유은영;김상건;정기화
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.327-327
    • /
    • 1994
  • 본 연구에서는 간손상에 대한 해독제의 연구 및 안전성 평가연구로서 H$_2$-rcccptor길항제와 한방에서 건위역으로 이용되는 생약추출물 (생강, 정향 및 후박나무의 수피추출물, 강활, 시호, 토복령 및 금은화)이 화합물로 유발된 간독성에 미치는 효과를 고찰하였다. 또한 식물의 2차 대사산물로서 식품, 의약품 및 화장품 향신료 등의 첨가제로 이용되는 monotcrpcnoids중 $\alpha$-pinene, limonenc, gcraniol 및 cincol 이 phase II 효소계중 glutathione S-transferase(GST)의 class alpha 및 mu family계 효소와 microsomal cpoxidc hydrolase(mEH)의 발현에 미치는 영향을 관찰하였다.

  • PDF

Bioaccumulation, alterations of metallothionein, and antioxidant enzymes in the mullet Mugil cephalus exposed to hexavalent chromium

  • Min, Eun Young;Ahn, Tae Young;Kang, Ju-Chan
    • Fisheries and Aquatic Sciences
    • /
    • v.19 no.4
    • /
    • pp.19.1-19.7
    • /
    • 2016
  • A laboratory experiment was conducted to determine hexavalent chromium ($Cr^{6+}$) accumulation in the mullet and investigate $Cr^{6+}$ toxicity using a panel of biomarkers including metallothioneins (MTs), glutathione (GSH), glutathione S-transferase (GST), and superoxide dismutases (SODs) for 4 weeks. $Cr^{6+}$ bioaccumulation in all tissues, except muscle, was consistently time- and dose-dependent. The accumulation of $Cr^{6+}$ for 4-week exposures was in the following order: $kidney{\approx}liver$ > $intestine{\approx}gill$ > spleen > muscle. Compared with the control, $Cr^{6+}$ bioaccumulation was increased in ${\geq}200{\mu}g\;L^{-1}$ groups (P < 0.05). An independent relation was observed between accumulation factors (AFs) and exposure concentration. But AFs increased with exposure time. In the liver and gill, GST and SOD differed from the control at a high $Cr^{6+}$ concentration at 2 and 4 weeks (P < 0.05). This study indicated that the gills were as sensitive as the liver to $Cr^{6+}$ toxicity. However, the latter appeared to influence largely on the organism's adaptive response to $Cr^{6+}$, since $Cr^{6+}$ may elevate GSH and MT levels by enhancing the hepatic uptake of metal in the mullet.

Increase in Hepatic DT-Diaphorase Activity by Chronic Administration of Panax ginseng Extract to Mice (생쥐에서의 인삼추출액의 장기간 투여에 의한 간장 DT-Diaphorase 활성의 증가)

  • Lee, Kang-Mee;Wie, Myung-Bok;Song, Dong-Keun;Kim, Yong-Sik;Kim, Yung-Hi
    • Journal of Ginseng Research
    • /
    • v.17 no.2
    • /
    • pp.123-126
    • /
    • 1993
  • Effects of chronic administration of ginseng extracts (30 or 150 mg/kg/day for 52 days, p.o.) to mice on the activities of DT-diaphorase and glutathione S-transferase (GST) in the liver and the brain were studied. The DT-diaphorase activity in the liver was increased over 2-fold at the dose of both 30 and 150 mg/kg/day, while there was no change in the activity of the enzyme in the brain. The GST activity in the liver was increased in a dose-dependent fashion up to 142% of the control value at the dose of 150 mg/kg/day. while there was no change in the activity of the enzyme in the brain. The ginseng-induced increase in the activities of these hepatic phase II drug-metabolizing enzymes which are involved in the detoxification of carcinogens, is suggested to underlie, at least in part, the anticarcinogenic activity of Panax ginseng.

  • PDF