• Title/Summary/Keyword: glutathione transferase

Search Result 884, Processing Time 0.027 seconds

THE ESSENTIAL ROLE OF PI3-KINASE IN THE INDUCTION OF GLUTATHIONE S-TRANSFERASE BY TERT-BUTYLHYDROQUINONE AND OLTIPRAZ: DIFFERENTIAL EFFECTS ON Nrf2/ARE ACTIVATION

  • Kim, Sang-Geon;Kang, Keon-Wook
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.05a
    • /
    • pp.96-106
    • /
    • 2001
  • The phase II detoxifying enzymes are inducible by a variety of compounds and play an essential role for the protection of cells. Many of chemoprotective agents trigger cellular signals for the phase II enzyme induction, which subsequently activate gene transcription through ARE activation.(omitted)

  • PDF

Association between Endometriosis and Polymorphisms of N-acetyl Transferase 2 (NAT2), Glutathione S-transferase M1 (GSTM1) and Cytochrome P450 (CYP) 1A1 Genes in Korean Infertile Patients (불임여성에서 NAT2, GSTM1, CYP1A1 유전자 다형성과 자궁내막증의 상관관계에 관한 연구)

  • Song, Hyun-Jeong;Jun, Jin-Hyun;Choi, Hye-Won;Hur, Girl;Kang, Inn-Soo;Koong, Mi-Kyoung;Lee, Hyoung-Song
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.31 no.2
    • /
    • pp.141-147
    • /
    • 2004
  • Objective: To investigate the association between endometriosis and polymorphisms of N-acetyl transferase 2 (NAT2), glutathione S-transferase M1 (GSTM1), and cytochrome P450 (CYP) 1A1 genes in Korean infertile patients. Materials and Methods: A total of 303 infertile patients who had undertaken diagnostic laparoscopy during January, 2001 through December, 2003 at Samsung Cheil Hospital enrolled in this study. The patients were grouped according to laparoscopic findings: minimal to mild endometriosis (group I: n=147), moderate to severe endometriosis (group II: n=57), normal pelvic cavity (n=99). Peripheral blood was obtained and genomic DNA was extracted. The genotypes of each genes were analyzed using polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP). For NAT2, RFLP was used to detect the wild type (wt) and mutant (mt) alleles, enabling classification into slow (mt/mt) or fast (wt/wt or wt/mt) acetylation genotypes. For GSTM1, PCR was used to distinguish active (+/- or +/+) from null (-/-) genotypes. For CYP1A1, MspI digestion was used to detect the wild type (A1A1), heterozygote (A1A2) or mutant (A2A2) genotypes. Result: The genotype frequencies of NAT2 slow acetylator was 12.8%, 10.9%, 12.8% in group I, group II and control, respectively. The genotype frequencies of GSTM1 null mutation was 55.3%, 41.8%, 53.2% in group I, group II and control, respectively. The genotype frequencies of CYP1A1 MspI polymorphism was 16.3%, 9.1%, 18.1% in group I, group II and control, respectively. No significant difference was observed between endometriosis and normal controls in the genotype frequencies of the NAT2, GSTM1, CYP1A1 MspI polymorphism. Conclusion: The NAT2, GSTM1, CYP1A1 gene polymorphism may not be associated with the susceptibility of endometriosis in Korean women.

Comparison of toxicity and detoxifying enzyme activity in carp (Cyprinus carpio) treated with some synergistic pesticides (농약 상호간의 협력작용에 의한 잉어의 독성과 해독효소 활성의 비교)

  • Yang, Kwang-Rok;Shim, Jae-Han;Suh, Yong-Tack
    • Applied Biological Chemistry
    • /
    • v.35 no.5
    • /
    • pp.367-374
    • /
    • 1992
  • This study was performed to investigate effects of probable detoxifying enzyme activity and toxicity by pesticides and their combinations in the fresh water fish. Seven pesticides including IBP, isoprothiolane, cartap, ridomil, chlorothalonil, captafol and endosulfan were subjected to investigate for their acute toxicites and synergism possibilities. The $LC_{50}$ value of endosulfan was the lowest at showing 0.0079 ppm and that of metalaxyl was the highest as showing 40 ppm over. The synergism effects of relative pesticides were observed in the combinations of isoprothiolane+IBP and isoprothiolane+cartap. The changes of glycogen contents in fish liver were assayed for 5 pesticides and its highest inhibition effect of glycogen showed in IBP treated fish. The activity of probable detoxifying enzymes including carboxylesterase (CE), glutathion S-transferase (GST) and lactate dehydrogenase (LDH) were assayed in carp liver at dose of sublethal concentrations. Effects of pesticides on changes in each enzyme activities were as follows: carboxylesterase (CE) activities were the highest in IBP and gtutathion S-transferase (GST) activities were the highest in iosoprothiolane+IBP. Both activities of carboxylesterase (CE) and glutahtion S-transferase (GST) were increased by 5 chemicals. The highest LDH activity showed in isoprothiolane treated fish, while the lowest activity was observed in isoprothiolane+cartap. Sublethal exposure to cartap and isoprothiolane+cartap in carp exerted various effects on LDH activity.

  • PDF

Suppression of Fatty Acid Synthase by Dietary Polyunsaturated Fatty Acids is Mediated by Fat itself, not by Peroxidative Mechanism

  • Kim, Hye-Kyeong;Choi, Sung-Won;Lee, Hae-Jeung;Lee, Joo-Hee;Choi, Hay-Mie
    • BMB Reports
    • /
    • v.36 no.3
    • /
    • pp.258-264
    • /
    • 2003
  • This study examined the effect of dietary polyunsaturated fatty acids (PUFA) that were supplemented with vitamin E on lipid peroxidation, glutathione-dependent detoxifying enzyme system activity, and lipogenic fatty acid synthase (FAS) expression in rat liver. Male Sprague-Dawley rats were fed semipurified diets containing either 1% (w/w) corn oil or 10% each of beef tallow, corn oil, perilla oil, and fish oil for 4 wk. Alpha-tocopherol was supplemented in perilla oil (0.015%) and fish oil (0.019%). Hepatic thiobarbituric acid reactive substances, an estimate of lipid peroxidation, were not significantly different among the dietary groups. The glutathione peroxidase, glutathione reductase, and glutathione S-transferase activities were all elevated by the polyunsaturated fats, especially fish oil. The activity of FAS was reduced in the polyunsaturated fat-fed groups in the order of fish oil, perilla oil, and corn oil. The mRNA contents decreased in rats that were fed the 10% fat diets, particularly polyunsaturated fats, compared with the rats that were fed the 1% corn oil diet. Similarly, the inhibitory effect was the greatest in fish oil. These results suggest that lipid peroxidation can be minimized by vitamin E; PUFA in itself has a suppressive effect on lipogenic enzyme.

Evaluation of the Efficacy of Kochiae fructus Extract in the Alleviation of Carbon Tetrachloride-induced Hepatotoxicity in Rats

  • Kim Na-Young;Lee Jeong-Sook;Kim Seog-Ji;Park Myoung-Ju;Kim Seok-Hwan
    • Nutritional Sciences
    • /
    • v.8 no.4
    • /
    • pp.212-218
    • /
    • 2005
  • Hepatoprotective effects of the extract of Kochiae fructus (KF), a traditional oriental medicinal plant, were evaluated against carbon tetrachloride($CCl_4$)-induced liver damage in rats. Male Sprague-Dawley rats were divided into control, $CCl_4,\;CCl_4$ plus methanol extract of KF (KFM-$CCl_4$), and $CCl_4$ plus butanol extract of KF (KFB-$CCl_4$) groups. KFM and KFB were orally administered once a day (200 mg/kg body weight) for 14 days. A mixture of 0.2 mL/100 g body weight of $CCl_4$ in olive oil was injected at 30 minutes after the final administration of KFM and KFB. The KFB pretreatment resulted in a significant decrease in the serum transaminase and lactic dehydrogenase levels in the $CCl_4$-treated rats. The $CCl_4$ treatment significantly lowered the activities of glutathione, glutathione reductase (GR), glutathione-S-transferase (GST), superoxide dismutase (SOD), catalase and glutathione peroxidase (GSH-Px). However, pretreatment with KFM and KFB resulted in a significant increase in the glutathione, GR and GST levels. KFB increased the activities of SOD, catalase and GSH-Px, but KFM did not alter them. Pretreatment with KFM and KFB resulted in a significant decrease in the production of aminopyrine N-demethylase in the $CCl_4$-treated rats. KF extract would appear to contribute to alleviate the adveISe effect of $CCl_4$ treatment by enhancing the hepatic antioxidant defense system.

Lycopene supplementation suppresses oxidative stress induced by a high fat diet in gerbils

  • Choi, Soo-Kyong;Seo, Jung-Sook
    • Nutrition Research and Practice
    • /
    • v.7 no.1
    • /
    • pp.26-33
    • /
    • 2013
  • The effect of lycopene supplementation on the antioxidant system was investigated by analyzing lipid peroxide levels, glutathione contents, and antioxidant enzyme activities in Mongolian gerbils fed a high fat diet. Gerbils were fed on each experimental diet for 6 weeks; normal diet (NC), normal diet with 0.05% lycopene (NL), high fat diet (HF), and a high fat diet with 0.05% lycopene (HFL). Dietary supplementation of lycopene increased hepatic lycopene level in gerbils fed a normal or high fat diet (P < 0.05). Liver and erythrocyte concentrations of lipid peroxide increased in gerbils fed a high fat diet, whereas lycopene supplementation decreased liver and erythrocyte concentrations of lipid peroxide (P < 0.05). Hepatic total glutathione content was higher in the NL group than that in the NC group (P < 0.05). Total antioxidant status in plasma increased following lycopene supplementation compared with that of the non-lycopene supplemented groups (P < 0.05). Hepatic catalase activity increased following dietary lycopene supplementation (P < 0.05). Superoxide dismutase activity in liver remained unchanged with lycopene supplementation, but erythrocyte superoxide dismutase activity increased in NL group compared with NC group (P < 0.05). Glutathione-S-transferase activity increased in the NL group compared to NC group (P < 0.05). Liver and erythrocyte glutathione peroxidase activity increased significantly in the NL group compared to that in the HF group (P < 0.05). Liver glutathione reductase activity was higher in the NL group than that in the NC group (P < 0.05). These results suggest that lycopene supplementation may be efficient for preventing chronic diseases induced by oxidative stress related to high fat diet.